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1 

 CHAPTER 1. GENERAL INTRODUCTION 

 

General Overview 

 

Over the span of last few decades, electronic structure methods have emerged as a 

viable and powerful approach to quantum mechanics. The recognition of electronic 

structure methods in the field of chemistry was highlighted by Nobel Prize awardees 

Walter Kohn and the late Sir John A. Pople in 1998 for the development of computational 

methods in quantum chemistry. Since then, the quantum chemistry field is continually 

growing with tremendous advances in theory and algorithmic methods, as well as the 

exponential increase in available computing power. Quantum chemistry offers the real 

promise of being able to complement experimental work as a means to uncover and 

explore new chemistry. 

 

Dissertation Organization 

 

This dissertation is comprised of seven chapters: Chapter 1 provides the 

theoretical background of ab initio methods and density functional theory, which are 

relevant to the computational methodologies presented in the following chapters. Chapter 

2 examines the anharmonicity associated with weakly bound metal cation dihydrogen 

complexes using the vibrational self-consistent field (VSCF) method and characterizes 

the interaction between a hydrogen molecule and a metal cation. Chapter 3 illustrates a 
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study of molecular hydrogen clustering around the lithium cation and their accompanied 

vibrational anharmonicity employing VSCF. Chapter 4 provides a qualitative 

interpretation of solvent-induced shifts of amides and simulated electronic absorption 

spectra using the combined time-dependent density functional theory/effective fragment 

potential method (TDDFT/EFP). Chapter 5 elucidates an excited-state solvent assisted 

quadruple hydrogen atom transfer reaction of a coumarin derivative using micro solvated 

quantum mechanical (QM) water and macro solvated EFP water.  Chapter 6 presents a 

dispersion correction to the QM!EFP1 interaction energy. Finally, a general conclusion 

of this dissertation work and prospective future direction are presented in Chapter 7. 

 

Theoretical Background 

 

The following quantum chemistry notations were used throughout this chapter. 

Many electron operators are denoted by a hat over upper case Latin letters. For example, 

the Hamltonion is Ĥ . One-electron operators are denoted by a hat over lower case Latin 

letters. For example, the Fock operator for electron-one is f̂ 1( ).  The exact many electron 

wave function is denoted by!.  The approximate many electron wave function is denoted 

by!.  Molecular spin orbitals (with latin indices  i, j,k,…) are denoted by !.  Molecular 

spatial orbitals (with latin indices  i, j,k,…) are denoted by ! .  Atomic spatial orbitals 

(with greek indices  µ,!,",… ) are denoted by !.  Occupied molecular spatial orbitals are 



www.manaraa.com

 

 

3 

specifically labeled by  a,b,c,… . Virtual molecular spatial orbitals specifically labeled by 

 r, s,t,… . Exact energies are denoted by Eexact .  Approximate energies are denoted by E.  

 

Ab initio methods 

 

Ab initio methods refer to a set of quantum mechanical approaches derived from 

the first principles of quantum mechanics. Generally, the term ab initio description is 

applied to methods that make certain approximations in order to solve the time-dependent 

(TD) Schrödinger equation1-6 

 
i! !
!t

"TD r,R,t( ) = Ĥ"TD r,R,t( )    (1) 

where !TD
 
is the wavefunction, which depends on the electronic coordinates, r, nuclear 

coordinates, R, and time, t. Ĥ  is the nonrelativistic Hamiltonian operator. ! is Planck’s 

constant, h, divided by 2"; i is the square root of !1. 

 

The first approximation to!TD  made by many ab inito methods is to assume that 

the spatial part (r and R) and the time part (t) of!TD  are separable  

!TD r,R;t( ) " ! r,R( ) f t( )    (2) 

where !  is the time-independent wavefunction and f  is the time-dependent function. 

Therefore, the time-independent Schrödinger equation can be written as 

Ĥ! r,R( ) = E! r,R( )    (3) 



www.manaraa.com

 

 

4 

where E is the total energy of the system. Unlike the time-dependent Schrödinger 

equation, the time-independent Schrödinger equation can be expressed as an eigenvalue 

problem.  

 

For a molecule with N electrons and M nuclei the Hamiltonian operator can be written in 

atomic units as 

Ĥ = !
i  = 1

N

" 1
2
#i

2 !
A  = 1

M

" 1
2MA

#A
2

     +
i  = 1

N

"
j  > i

N

" 1
rij
+

A  = 1

M

"
B  > A

M

" ZAZB

RAB

     !
i  = 1

N

"
A  = 1

M

" ZA

riA

   (4) 

where the electrons and the nuclei are described by the position vector ri and RA, 

respectively. The distance between ith electron and the jth electron is rij = | rij | = | ri ! rj |; 

the distance between Ath nucleus and the Bth nucleus is RAB = | RAB | = | RA ! RB |, and 

the distance between ith electron and the Ath nucleus is riA = | riA | = | ri ! RA |. The MA is 

the ratio of the mass of nucleus A to the mass of an electron, and ZA is the atomic number 

of nucleus A. The Laplacian operators !i
2  and !A

2  involve differentiation with respect to 

the coordinates of the ith electron and the Ath nucleus. The first term in Eq. (4) is the 

operator for the kinetic energy for the electrons T̂e( ) ; the second term is the operator for 

the nuclear kinetic energy T̂n( ) ; the third term represents the repulsion between electrons 

V̂ee( ) ; the fourth term represents the repulsion between nuclei V̂nn( ) : the fifth term 
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represents the attraction between electrons and nuclei V̂en( ) . The Schrödinger equation 

may be written compactly as     

Ĥ = T̂e r( ) + T̂n R( ) + V̂ee r( ) + V̂nn R( ) + V̂en r,R( )   (5) 

Unfortunately,V̂en r,R( ) is problematic, because the electronic and nuclear coordinates 

are not separable, so the wave function cannot be written as a product of nuclear and 

electronic terms. 

 

The second approximation made by many ab inito methods is the separation of 

nuclear and electronic motion (Born-Oppenheimer approximation).7 This is possible 

because the nuclear masses are much greater than those of electrons, and therefore, nuclei 

move much more slowly compared to the electrons. As a consequence, the electrons in a 

molecule rapidly adjust their distribution to changing nuclear positions. This makes it a 

reasonable approximation to assume that the electron distribution depends only on the 

instantaneous positions of the nuclei and not on their velocities. The Born-Oppenheimer 

approximation eliminates the nuclear kinetic energy term T̂n( )  in Eq. (5), and it allows 

the repulsion between nuclei V̂nn( )  to be calculated once and held constant while the 

electronic part of the Schrödinger equation is solved. The Hamiltonian of Eq. (5) is then 

reduced to an electronic Hamiltonian Ĥelec( ) : 

Ĥelec = T̂e r( ) + V̂ee r( ) + V̂en r,R( )   (6) 

Therefore the electronic Schrödinger equation can be written as  
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Ĥelec!elec = Eelec!elec    (7) 

The solution to the above Schrödinger equation is the electronic wavefunction 

!elec = !elec ri{ }; RA{ }( )    (8) 

which describes the motion of electrons. !elec  explicitly depends on the electronic 

coordinates but depends parametrically on the nuclear coordinates, as does the electronic 

energy.            

Eelec = Eelec RA{ }( )    (9) 

Therefore, the total electronic energy (potential energy expression) must contain the 

electronic energy and the nuclear repulsion energy for a particular nuclear configuration.            

Etot = Eelec +
A  = 1

M

!
B  > A

M

! ZAZB

RAB

     (10) 

Eq. (10) gives rise to the concept of a potential energy surface (PES), a function that 

describes how the total electronic energy of a system varies with the nuclear degrees of 

freedom. 

 

For a system with more than one electron, further approximations are required to 

treat the V̂ee  term in Eq. (6), because the electron coordinates are not separable. The most 

basic approximation is to substitute the explicit electron-electron interaction with an 

averaged interaction and solve self-consistently. Each electron is subjected not to every 

other individual electron, but to the mean field of the rest of the electrons. This 
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approximation is known as the self-consistent field (SCF) Hartree-Fock (HF) method.8-11 

Starting from Eq. (6), the one-electron Fock operator f̂ 1( )  for electron 1 is given by 

f̂ 1( ) = ĥ(1)+! HF 1( )    (11) 

The first term in Eq. (11) is the core-Hamiltonion operator. ĥ(1)  is given by 

ĥ(1) = ! 1
2
"1

2 !
A  = 1

M

# ZA

r1A
   (12) 

which describes the kinetic energy and the potential energy of an electron in the field of 

the nuclei. The second term in Eq. (11) is the effective one-electron potential operator 

called the Hartree-Fock potential ! HF 1( ) , which results from the presence of the other 

electrons.   

! HF 1( ) =
i  = 1

N

" Ĵi 1( )# K̂i 1( )$% &'    (13) 

In Eq. (13) Ĵ is the Coulomb operator and K̂ is the exchange operator.  

 

An electronic wavefunction for N particles must be a function of 4N coordinates: 

for each electron, we have x, y, and z Cartesian coordinates plus the spin coordinate (ω), 

which can have values α and β. The Cartesian coordinates for electron i are usually 

denoted by a collective index ri , and the set of Cartesian plus spin coordinates is often 

denoted xi . The wavefunction !a x( )  of an electron is a spin-orbital, which takes the 

form 
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!a x( ) =
" r( )# $( )

or
" r( )% $( )

&

'
(

)
(

   (14) 

where ! r( ) is the spatial component and the spin component is either α or β (spin up 

or spin down).  

 

What is an appropriate form for an N-electron wavefunction? The simplest 

solution would be a product of one-electron functions referred to as a Hartree product 

!HP . !
HP x1,x2,…,xN( ) = "1 x1( )"2 x2( )!"N xN( )           (15) 

Unfortunately, the Hartree product is not a suitable wavefunction because it ignores the 

antisymmetry principle. Since electrons are fermions, the electronic wavefunction must 

be antisymmetric with respect to the interchange of the coordinates of any pair of 

electrons. This is not the case for the Hartree product. 

 

The required antisymmetric condition to the multi electronic wavefunction can be 

achieved by using Slater determinant: 

 

! x1,x2 ,…,xN( ) = N !( )"1 2
#i x1( ) # j x1( ) ! #k x1( )
#i x2( ) # j x2( ) ! #k x2( )
" " "

#i xN( ) # j xN( ) ! #k xN( )

  (16) 

It is convenient to introduce a shorthand notation using the diagonal elements of the 

Slater determinant as follows: 
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! x1,x2 ,…,xN( ) = "i" j…"k    (17) 

In quantum chemical computations, each unknown spatial molecular orbital !( ) is 

expanded using a set of known set of basis functions (atomic spatial orbitals). The ith 

molecular spatial orbital ! i can be represented by a summation over basis functions 

(atomic spatial orbitals)  !1,…,!N{ } , called a linear combination of atomic orbitals 

(LCAO): 

! i = Cµi"µ
µ=1

N

#    (18) 

where Cµi  are the LCAO coefficients. Basis sets of the atomic orbitals are usually 

comprised of Gaussian functions. A complete set of basis functions in linear combination 

could be used to construct any other well-behaved function. In practice, one does not 

have a complete set of one-particle basis functions ! i x( ){ };  typically one assumes that 

the incomplete one-electron basis set is large enough to give useful results. 

 

The one-electron operators given in Eq. (13), Ĵ  and K̂ act on spin orbitals via the 

following equations:

 
Ĵb 1( )!a 1( ) = dx2!b

" 2( )r12#1!b 2( )$%& '
( !a 1( )    (19) 

K̂b 1( )!a 1( ) = dx2!b
" 2( )r12#1!a 2( )$%& '

( !b 1( )    (20)  

The Hartree-Fock equations define the energy of the spin orbitals !a as !a ; 

f̂ !a = "a !a    (21) 
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The Hartree-Fock equations correspond to an optimal set of molecular orbitals that 

minimize the energy of a molecular system, by making use of the variational principle. 

This means that the calculated energy of any Hartree-Fock wavefunction, EHF , is 

guaranteed to be an upper bound to the exact non-relativistic energy Eexact. 

Eexact ! EHF    (22) 

 

The Hartree-Fock method formally scales on the order of O N 4( )  where N 

measures the size of the system (e.g., number of basis functions). The main downside of 

the Hartree-Fock method is that it does not account for the instantaneous electron-

electron correlation (explicit electron-electron interaction) because each electron is in the 

average field of all the other N !1( ) electrons. Due to the neglect of explicit electron 

correlation, the Hartree-Fock method gives an upper limit to the exact energy and the 

difference between the exact and the Hartree-Fock energy is called the electron 

correlation energy. In order to recover the electron correlation several post- Hartree-Fock 

methods have emerged. Some of these methods such as configuration interaction singles 

(CIS), coupled-cluster methods (CC) and perturbation theory (PT), are summarized 

below.  

 

The conceptually simplest method for accounting for correlation effects is 

configuration interaction (CI).12 The scope of CI is to improve the Hartree-Fock solution 

by increasing the space of all possible many-electron wavefunction from a single Slater 

determinant (in Hartree-Fock theory) to a complete set of Slater determinants, in which 
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all electrons are distributed among all available orbitals. It is convenient to define these 

other determinants with respect to the determinant !0 that is formed from the N lowest 

energy Hartree-Fock spin orbitals !0 . The N-electron determinants ! i  can be written 

as substitutions or “excitations” from the Hartree-Fock “reference” determinant to obtain 

the exact many electron wavefunction !0 : 

 

!0 = c0 "0 +
a
r

# ca
r "a

r +
a  < b
r  < s

# cab
rs "ab

rs

           +
a  < b  < c
r  < s  < t

# cabc
rst "abc

rst +
a  < b  < c < d
r  < s  < t  < u

# cabcd
rstu "abcd

rstu +!
  (23) 

where !a
r  means the Slater determinant formed by replacing spin-orbital a in !0  

with spin orbital r, etc. Every N-electron determinant can be described by the set of N 

spin orbitals from which it is formed, and this set of orbital occupancies is often referred 

to as a “configuration.” The advantage of the CI method is its generality; the formalism 

applies to excited states and to systems far from their equilibrium geometries. By 

contrast, conventional single-reference perturbation theory and coupled-cluster 

approaches generally assume that the reference configuration is dominant, and they may 

fail when it is not. If one performs a calculation using a given set of one-particle 

functions ! i x( ){ }  and all possible N-electron functions (determinants) ! i{ }  the 

procedure is called “full CI”. If one desires only wavefunctions of a given spin and/or 

spatial symmetry, as is usually the case, only those N-electron functions of that spin and 
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symmetry are included, since the Hamiltonian matrix is block-diagonal according to 

space and spin symmetries.  

 

Unfortunately, a full CI is computationally intractable for any but the smallest 

systems, even with an incomplete one-electron basis set, due to the presence of a large 

number of N-electron basis functions. Therefore, the CI space in Eq. (23) must be 

truncated in such a way that the approximate CI wavefunction and energy are as close as 

possible to the exact values. Singly excited configuration interaction (CIS) is the 

truncated CI expansion in Eq. (23) after the first summation. The CIS method formally 

scales on the order of O N 5( ) . A wavefunction that corresponds to a truncated CI 

expansion is neither size consistent nor size extensive. A method is said to be size 

extensive if the energy calculated scales linearly with the number of particles (electrons) 

N. A method is called size consistent if it gives an energy EA + EB for two well separated 

subsystems A and B in a supermolecule calculation. While the definition of size 

extensivity applies at any geometry, the concept of size consistency applies only in the 

limiting case of infinite separation.  

 

The perturbation theory of Møller and Plesset,13 a subset of many-body 

perturbation theory (MBPT), is an alternative approach to the CI that considers dynamic 

correlation effects with better computational scaling. The conventional approach to nth-

order MBPT treats the exact non-relativistic Hamiltonian Ĥ  as a perturbed Hartree-Fock  
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Hamiltonian Ĥ0 , with the energy and wavefunction expanded in n orders of the 

perturbation V associated with a parameter!  that can have the value of 0 or 1.  

Ĥ = Ĥ0 + !V    (24) 

 
!i = " i

0( ) + # " i
1( ) + # 2 " i

2( ) +!    (25) 

 Eexact = Ei
0( ) + ! Ei

1( ) + ! 2Ei
2( ) +!    (26) 

The Ei
n( )

 is the nth-order energy. The motivation of nth-order perturbation theory is to 

systematically incorporate the higher order corrections to better approximate the exact 

energy and wavefunction. In particular, the formalism of 2nd-order Møller-Plesset (MP2) 

theory has found great importance as a reliable, size consistent, and size extensive 

method. The second-order MP2 energy correction for the ground state (i = 0) is  

Ei
2( ) =

n  > 0
!

"0
0( ) V "n

0( ) 2

E0
0( ) # En

0( )    (27) 

A disadvantage of the MP2 method is that it is not variational. In addition, the higher 

order energy corrections (MP3, MP4...) can lead to unpredictable behavior since the MPn 

series is sometimes not convergent. The reliability of perturbation theory depends on how 

well the Hartree-Fock wavefunction approximates the exact non-relativistic 

wavefunction. In other words, the perturbation must be small for perturbation theory to 

provide reliable results. The MP2 method formally scales on the order of O N 5( ) .   

 

The coupled cluster (CC)14 method is more computationally expensive but also a 

more accurate many body approach than MP2. By an exponential ansatz for the coupling 
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of correlated electron pairs, highly excited determinants are incorporated into the 

wavefunction.  

! = eT̂ "0    (28) 

where !0  is usually the ground state Slater determinant of the Hartree-Fock molecular 

orbitals. 

The operator eT̂  is defined by the Taylor series expansion 

 
eT̂ = 1+ T̂ + T̂

2

2!
+ T̂

3

3!
+!=

k=0

!

" T̂ k

k!
   (29) 

 and  the cluster operator T̂  

 T̂ = T̂1 + T̂2 + T̂3 +!+ T̂N    (30) 

where N is the number of electrons in the molecule and the single excitation operator 

T̂1( )  
and the double excitation operator T̂2( )  

are defined below.  

T̂1!0 =
r=N +1

"

#
a=1

N

# ta
r!a

r    (31) 

T̂2!0 =
s= r+1

"

#
r=N +1

"

#
b=a+1

N

#
a=1

N $1

# tab
rs!ab

rs    (32) 

where !a
r is a single Slater determinant with the occupied spin orbital !a replaced by the 

virtual spin orbital ! r  and ta
r  coefficient.!ab

rs  is a Slater determinant with the occupied 

spin orbital !a and !b replaced by the virtual spin orbitals ! r  and ! s  and tab
rs  coefficient. 

It is necessary to solve for the coefficients ta
r  and tab

rs  during the process of finding ! . 

This is done by solving the following set of equations. 
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!0 e

" T̂1+T̂2+!( ) Ĥe T̂1+T̂2+!( ) !0 = E    (33) 

 
!a

r e" T̂1+T̂2+!( ) Ĥe T̂1+T̂2+!( ) !0 = 0    (34) 

 
!ab

rs e" T̂1+T̂2+!( ) Ĥe T̂1+T̂2+!( ) !0 = 0    (35) 

and so on, where !0  is the ground state wavefunction, !a
r  is the wavefunction of single 

excitations, !ab
rs  is the wavefunction of double excitations, etc. The cluster operator (and 

the number of equations) is truncated at the desired number of excitations. The “gold 

standard” of computational chemistry is coupled cluster with singles, doubles, and 

perturbatively calculated triple excitations (CCSD(T)) for its excellent compromise 

between accuracy and the relatively low computational cost for molecules near 

equilibrium geometries. The computational cost increases sharply with the highest level 

of excitation in the CC method. For example CCSD, CCSD(T), and CCSDT  methods 

formally scales in the order of  O N 6( ) , O N 7( ) , and O N 8( ) , respectively.  

 

Density Functional Theory 

 

A popular alternative to ab initio wavefunction methods is first principles density 

functional theory (DFT)15-17 for electronic structure studies. Unlike the methods 

discussed above (Hartree-Fock, MPn, CC, and CI), DFT does not attempt to solve the 

Schrödinger equation. Instead it is based on the concept that the energy of a chemical 
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system is a functional form of the electron density ! x, y, z( )"# $% , which is in turn a 

function of the coordinates of the nuclei. Regardless of the number of electrons, the 

electronic density ! x, y, z( )"# $%  is dependent upon three spatial coordinates; this would 

eliminate the many body problem associated with solving the Schrödinger equation. In 

general, DFT has a computational scaling similar to Hartree-Fock theory but it depends 

on the functional used. Therefore, DFT is an efficient alternative to ab initio 

wavefunction methods. 

  

In DFT method the use of the one-electron Kohn-Sham operator ĥKS( ) , defined in 

Eq. (36), allows the electrons to be treated as independent particles moving in an external 

potential of the other electrons, which resembles to the Hartree-Fock method. 

ĥKS = ! 1
2
"1

2 !
A  = 1

M

# ZA

r ! r1A
+ $

% &r( )
r ! &r

d &r +VXC r( )  (36) 

The correlation effects are included via an exchange-correlation functional, VXC r( ) . The 

major problem with DFT is that the exact functionals for VXC r( )  are not known except 

for the free electron gas. However, approximations such as the local-density 

approximation (LDA), the generalized gradient approximation (GGA), and the meta-

generalized gradient approximation (meta-GGA) exist which permit the calculation of 

some properties accurately. Functionals that make use of an admixture of Hartree-Fock 

exchange are referred to as global hybrid exchange functionals. The functionals that have 

no Hartree-Fock exchange contribution are known as pure density functionals. 
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Time-dependent density functional theory (TDDFT)18,19 is a useful tool for 

extracting electronic excited state properties. Compared to accurate ab initio excited state 

wavefunction methods, the relatively low computational cost of TDDFT has made it very 

attractive method for computing excited state properties. The computational scaling 

factor of TDDFT depends on the DFT functional used.  Note that CIS is less expensive 

than TDDFT. The problem of finding excitation energies within TDDFT can be reduced 

to the solution of an eigenvalue problem, which in a two-level approximation (i.e., 

including only single excitations) is given by 

A B
B A

!

"
#

$

%
&
X
Y

!

"
#

$

%
& ='

1 0
0 (1

!

"
#

$

%
&
X
Y

!

"
#

$

%
&    (37) 

where A and B are the Hessians of the electronic energy. ! is the response matrix which 

represents the excitation energies, and X (Y) is a vector that denotes excitation (de-

excitation) coefficients.  

 

The dominant contributions to the A matrix are the transition energies between 

the virtual and occupied Kohn-Sham orbitals. The matrix B represents a coupling 

between different transitions. The elements of the A and B matrix elements are given by 

Aar ,bs = ! ab! rs " r # "a( ) + 2 ar bs( ) + ar fXC bs( )   (38) 

Bar ,bs = 2 ar bs( ) + ar fXC bs( )    (39) 
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The leading term on the diagonal of matrix A is the orbital energy difference between the 

occupied orbital a and the virtual orbital r. The remaining terms in A (and B) correspond 

to two-electron integrals between a,b occupied orbitals and r,s virtual orbitals.  

 

The most challenging part of the DFT approach is determining the appropriate 

exchange and correlation functionals. Many exchange and correlation functionals contain 

parameters, that are fitted to describe specific types of chemical systems or processes. 

However, the DFT approach can be computationally more tractable than the correlated ab 

initio approaches. 
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CHAPTER 2. ANHARMONICITY OF WEAKLY BOUND  

M+!H2 COMPLEXES 

 

A paper published in The Journal of Physical Chemistry A 

Nuwan De Silva, Bosiljka Njegic, and Mark S. Gordon 

 

Abstract 

 

The anharmonicity of weakly bound complexes is studied using the vibrational 

self-consistent field (VSCF) approach for a series of metal cation dihydrogen (M+!H2) 

complexes. The H–H stretching frequency shifts of M+–H2 (M+ = Li+, Na+, B+, and Al+) 

complexes are calculated with the coupled-cluster method including all single and double 

excitations with perturbative triples (CCSD(T)) level of theory with the cc-pVTZ basis 

set. The calculated H–H stretching frequency of Li+–H2, B+–H2, Na+–H2, and Al+–H2 is 

red shifted by 121, 202, 74 and 62 cm-1, respectively, relative to that of unbound H2. The 

calculated red shifts and their trends are in good agreement with the available 

experimental and previously calculated data. Insight into the observed trends is provided 

by symmetry adapted perturbation theory (SAPT).  
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I. Introduction 

 

Hydrogen is a promising candidate to meet the global energy demand and to 

foster a cleaner and sustainable new energy economy.1 In addition, oxidation of hydrogen 

in a fuel cell yields water as a byproduct; hence, there is no emission of green house 

gases or ozone precursors. With the recent advances in fuel cell technology, the extensive 

production of hydrogen using renewable energy sources appears to be a promising 

direction for solving the current energy crisis. 

 

Although hydrogen is the most abundant element in the universe, constituting 

about 93% of all atoms, pure hydrogen is not available in significant quantities in nature. 

Because hydrogen is not available as a pre-existing energy source like fossil fuels, it first 

must be produced and then stored as a carrier, much like a battery. Production of 

hydrogen can involve a variety of sources, including natural gas and coal. However, 

precautions must be taken to avoid the emissions of greenhouse gases and ozone 

precursors during the hydrogen extraction process.2  

  

Another challenge is presented in the large storage capacity necessary for 

hydrogen, which requires about four times the volume required by gasoline. Therefore, 

design of suitable, high capacity storage material is of great importance for hydrogen to 

be an efficient fuel.3 There are presently three general ways known for storing hydrogen: 

compressed hydrogen gas tanks, liquid hydrogen tanks, and materials-based hydrogen 
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storage. The energy density of gaseous hydrogen can be improved by storing hydrogen in 

compressed hydrogen gas tanks and liquid hydrogen tanks. However, the compressed 

hydrogen gas tanks and liquid hydrogen tanks have significant disadvantages. 

Compression is hindered by low hydrogen density and high-pressure operations, resulting 

in high costs for compression and tanks, and causes safety issues associated with high-

pressure storage.4 Liquefaction of hydrogen requires an amount of energy equal to almost 

half of that available from hydrogen combustion, and continuous boil-off occurring in the 

tanks limits the applications.3 

 

Recent research has been focused on lighter storage material with favorable 

uptake and release kinetics to overcome the issues associated with compression and 

liquefaction tanks. Hydrogen can be bound to materials, such as fullerenes5,6 and carbon 

nanotubes,7,8 stored as a solid compound via physisorption. However, materials that 

utilize physisorption have a low gravimetric uptake compared to that of chemisorption. 

Molecular hydrogen bound into a solid storage material via chemisorption such as metal 

hydrides,9 complex hydrides,10 metal cation-doped zeolites,11 and metal-organic 

frameworks (MOF),12 is a promising technique to overcome the storage problem.  

 

Metal cation-dihydrogen (M+!H2) complexes are simple charged polyatomic 

molecules and therefore constitute a useful benchmark system for assessing 

computational strategies aimed at describing ion-neutral complexes that are relevant for 

the hydrogen storage problem. In general, M+!H2 complexes are weakly bound, with 
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binding energies typically less than 5 kcal/mol. Therefore, the weak interaction in M+!H2 

complexes alone cannot achieve a significant adsorption capacity at reasonable 

temperatures. However, there are strategies to improve adsorption by making charged 

metal sites available within the material such as alkali-doped carbon nanotubes.13,14 

Analysis of binding between molecular hydrogen and a metal cation is useful to 

understand the various aspects of hydrogen storage. Such insight might be applied in the 

future to the design of novel materials with favorable absorption/desorption kinetics.  

 

Interactions between metal cations and dihydrogen adducts have been explored 

experimentally and theoretically. Recently Bieske, et al. reported rotationally resolved 

infrared spectra of simple metal cation-dihydrogen complexes in the gas phase, including 

Li+!H2,15 B+!H2,16 Na+!H2,17 and Al+!H2.18 A correlation between the red shift in the H2 

stretching frequencies upon complexation ("#HH) and the M+!H2 interaction energies was 

explored. A second paper by Bieske et al. reconsidered the relationship between the red 

shift and the metal-H2 binding.19 The observed red shifts in the H!H frequencies upon 

metal complexation was interpreted in terms of a charge transfer from the H!H bonding 

orbital into the sp hybrid orbital of the metal cation, especially for the more polarizable 

B+ and Al+ cations. The correlation between the binding energy and "#HH of dihydrogen 

adducts with alkaline cations (Li+, Na+, K+, Rb+) was also investigated by Vitillo et al.,11 

using Hartree-Fock (HF) and second order perturbation theory (MP2), as well as density 

functional theory (DFT) with the B3LYP functional. A linear correlation between binding 

energy and "#HH was reported.   
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The advent of a wide variety of high-resolution infrared spectroscopic methods 

facilitates more accurate probing of a broader frequency range. To to accurately interpret 

the origin of the spectral features, computational guidance is essential. The 

computationally least demanding approach and the most common method for 

determining vibrational frequencies is the harmonic approximation, a normal mode 

analysis based on the matrix of second derivatives of the energy (Hessian). However, in 

general, molecular vibrations are not purely harmonic and the intrinsic anharmonicity 

(diagonal potential) of a particular mode often increases as the frequency of the vibration 

decreases. Furthermore, the anharmonicity of a particular mode may increase due to 

coupling with other modes (coupling potential), coupling that is ignored in the harmonic 

approximation. The traditional approach to estimate anharmonic frequencies is to use 

scaling factors for the harmonic frequencies.20 Scaling the harmonic frequencies has often 

worked well. However, using a single scale factor for a great diversity of vibrational 

modes, ranging from the quasi-rigid vibrational motions that take place in strongly 

bonded molecules to the far more extended and floppy motions that occur in clusters 

bound by weak van der Waals interactions is not adequate. Therefore, improvements 

beyond the harmonic approximation can be important. A useful approach for predicting 

accurate vibrational spectra is the vibrational self-consistent field (VSCF) method, which 

starts from the harmonic approximation and systematically approaches the correct 

anharmonic frequencies. The VSCF21-24 method has emerged in recent years as a 

powerful tool for accurate predictions of vibrational spectra. The VSCF method can be 
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augmented by second order perturbation theory (PT2-VSCF),25 in order to correct for 

correlation effects among the modes. 

 

The aim of the present paper is to examine the anharmonicity associated with the 

Li+!H2, Na+!H2, B+!H2, and Al+!H2, complexes and characterize the interaction 

between a hydrogen molecule and a metal cation. The results are compared with the 

experimental vibrational data, including the bond lengths, the frequency of the H!H 

stretching mode, and the binding energy. An important motivation for this work is to 

examine, and attempt to understand, the red shifts in the H–H stretching mode (!1) in the 

M+–H2 complexes. The organization of the paper is as follows. Section II describes the 

computational details. In Sec. III, the geometry, anharmonic frequencies and interaction 

energies of the M+!H2 complexes are discussed. Concluding remarks are summarized in 

Section IV. 

 

II. Computational Details 

 

All calculations were performed using the GAMESS26,27 electronic structure code, 

and the molecules were visualized with MacMolPlt.28 Electronic structure calculations 

were performed on M+!H2 (M+ = Li+, Na+, B+, and Al+) complexes using coupled-cluster 

theory including all single and double excitations with perturbative triples (CCSD(T))29,30 

and the cc-pVTZ31 basis set. The geometry optimizations were carried out in C2v 
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symmetry. The CCSD(T) geometry optimizations were performed using numerical 

gradients. All stationary points are true minima (all positive force constants).   

 

To obtain the anharmonic frequencies, PT2-VSCF calculations were carried out 

on the potential energy surface (PES) that was generated on a 16x16 point grid, by 

making displacements along normal mode vectors expressed as a sum of simple internal 

coordinate contributions.32 Cartesian normal mode displacement vectors are often not 

suitable for treating nonlinear, low frequency vibrational motions, such as, bending and 

torsion.32 Because selection of internal coordinates is not unique even in a system as 

small as three atoms, two internal coordinate selections, 3-bond (two M!H bonds and the 

H!H bond) and 2-bond-1-angle (two M!H bonds and H!M!H angle), were considered. 

In order to obtain the optimum set of coordinates, the normal mode vibrational 

frequencies were partitioned into each internal coordinate according to the method 

described by Boatz and Gordon.33  

 

A series of calculations were carried out in which the spacing of the PES grid 

points along each vibrational mode was systematically increased until the diagonal 

frequencies converged, as described in a paper by Njegic and Gordon.34 While 

convergence of diagonal !1 and !3 frequencies was achieved as expected, the diagonal 

potential for the antisymmetric stretch (!2) frequency requires special treatment. At large 

displacements along the !2 mode, the three atoms of M+–H2 adopt close to a colinear 

configuration (due to the H–H internal rotation in the molecular plane). This near 
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linearity causes a failure of the internal to Cartesian coordinate transformation due to a 

very small determinant of the Wilson B matrix35 in the iterative procedure. When the 

internal-to-Cartesian coordinate transformation fails, the displacement vector that was 

used to generate the point that is closest to the failed point is used to step to the next point 

on the PES. Since such displacement vectors are expressed in the form of Cartesian rather 

than internal coordinates, artificial stretching may be introduced in the similar manner as 

if Cartesian coordinates VSCF were used to generate PES. If the number of failed points 

is small, the consequent errors may make only negligible contributions to the calculated 

VSCF frequencies. Unfortunately, for M+–H2, there is a large number of failed points 

generated along both diagonal and coupling potentials involving the !2 mode, whereas 

the number of failed points for the !1 and !3 frequencies is zero. To address this problem, 

a different approach was used for the !2 mode, in which the energies of the failed points 

were extrapolated by a forth order polynomial fit.  

 

To obtain bond dissociation energies that can be related to experiment, D0, zero 

point energy (ZPE) corrections have been obtained using the anharmonic frequencies. To 

analyze the relationship between the M+!H2 binding energies and the red shifts in the 

H!H vibrational frequencies, symmetry adapted perturbation theory (SAPT)36 

calculations were performed for each complex, also using the cc-pVTZ basis set. An 

additional interpretive tool is provided by the electrostatic potential (ESP)-derived 

MP2/cc-pVTZ atomic charges.37,38  
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III. Results and Discussion 

 

Molecular hydrogen adopts a C2v structure with each of the four isovalent metal 

cations, M+ (Li+: [He]; B+: [He]2s2; Na+: [Ne]; Al+: [Ne]3s2).11 Table 1 lists selected 

CCSD(T) geometric parameters of M+–H2 complexes, obtained with the cc-pVTZ basis 

set. The distance between M+ and the midpoint along the H–H bond (R) increases with 

the size of the metal cation. The R values are obtained experimentally via vibrationally 

averaged separations (R0), whereas calculated values are equilibrium separations (Re). As 

one would expect, R0 is generally larger than Re. The H!H bond length changes ("rHH) 

are taken relative to isolated H2 whose calculated bond distance is 0.743 Å. The Li+!H2 

and B+!H2 complexes have a larger "rHH (about 0.010 Å) than the Na+!H2 and Al+!H2 

complexes (about 0.005 Å). The larger "rHH may be due to greater electron 

delocalization of the H–H bond toward the Li+ and B+ centers than for Na+ and Al+, 

leading to greater H–H bond weakening. These relationships are discussed in more detail 

below. 

 

The three M+–H2 vibrational modes may be characterized by normal mode 

vectors as: H–H symmetric stretch (!1 = ~4000 cm-1), M+–H2 antisymmetric stretch (!2 = 

~700 cm-1) and M+–H2 symmetric stretch (!3 = ~400 cm-1). Choosing a coordinate system 

to use for the PES displacements plays a vital role in VSCF calculations. Choosing the 

most separable coordinate system even for triatomic molecules is not trivial. The ideal 

coordinate system has minimal mode-mode coupling. In some previous rovibrational 
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energy level calculations, the Hamiltonian was written in Jacobi coordinates (r, R, $) for 

Li+–H2,39 Na+–H2,17 and Al+–H2
18 complexes, where r is the H–H intra-molecular vector, 

R is the vector between M+ and the midpoint along H–H bond, and $ is the angle between 

r and R. In this paper, the following three choices of coordinates for M+–H2 complexes 

are considered: (1) Cartesian coordinates; (2) two M–H bonds and the subsumed angle 

(2-bond-1-angle); (3) three bonds (3-bond). Previous work has demonstrated the utility of 

internal coordinates for performing VSCF calculations.32,34 Boatz and Gordon33 

demonstrated how to decompose normal modes and the corresponding force constants in 

terms of internal coordinates. This method can be used to help determine the most 

separable set of internal coordinates. For example, Table 2 presents the contribution of 

each internal coordinate to each normal coordinate force constant for the Li+–H2 complex 

at the CCSD(T)/cc-pVTZ level of theory. In all three normal modes, the Li–H bond 

distances contribute for both choices of internal coordinates, whereas the H–H distance 

appears to be a more appropriate choice than the H–Li–H angle.  

 

The difference between the two sets of internal coordinates arises from the 

treatment of the H!H bond distance. The 3-bond set of internals ensures an explicit 

treatment of the H!H bond length during molecular vibrations. The contribution of the 

H!Li!H angle to the !2 mode is zero (Table 2). In Figures 1a and 1b, the H!H distance is 

plotted as a function of the displacements (at small amplitude displacements) made along 

the !2 and !3 modes, respectively, when Cartesian, 2-bond-1-angle and 3-bond 

coordinates are used to generate the diagonal PES. While both Cartesian and 2-bond-1-
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angle coordinates lead to changes in the H!H distance as displacements are made along 

mode !2, the H!H distance is preserved if 3-bond coordinates are used. The performance 

of the three coordinate sets is also reflected in the very different values of the !2 diagonal 

frequency at amplitude ~1100, ~1100, ~800 cm-1 for the Cartesian, 2-bond-1-angle and 3-

bond coordinates, respectively. Importantly, any errors that are made in the diagonal 

potential (for example, by using inappropriate coordinates) will be propagated into the 

coupling potential, and this will be reflected in errors in the predicted anharmonic 

frequencies. Both Cartesian and 3-bond coordinates preserve the H!H distance as 

displacements are made along mode !3, while the 2-bond-1-angle coordinate choice leads 

to changes in the H!H distance (Figure 1b). 

 

Figure 2 shows vectors associated with the three types of vibrational motion 

exhibited by the M–H2
+ molecules. While the !1 and !3 modes can be described as linear 

displacements, the !2 mode vectors show strikingly different types of motion, depending 

on whether they are expressed in terms of 2-bond-1-angle (Figure 2a) or 3-bond (Figure 

2b). While the !2 antisymmetric stretch can be described as linear displacements along 

the bonds when the 2-bond-1-angle internal coordinates are used, one sees the in-plane 

internal rotation noted earlier when the 3-bond internal coordinates are used. The 3-bond 

coordinate system ensures maximum separation of all three modes and thus is used in all 

subsequent calculations of molecular vibrations.  
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The calculated CCSD(T)/cc-pVTZ harmonic and anharmonic (VSCF-PT2) 

vibrational frequencies along with other available published calculations and 

experimental data are tabulated in Table 3. There is an excellent agreement (within 20 

cm-1) of the PT2-VSCF frequencies with the available experimental data. The 

anharmonic corrections to the harmonic frequencies are rather different for the three 

vibrational modes. The ratio of the VSCF-PT2/harmonic frequencies ranges from 0.74 to 

0.94 for the various frequencies listed in Table 3. This illustrates the fact that using one 

scaling factor40 to scale all harmonic frequencies would not capture the actual 

anharmonicity that is present in the complexes. The VSCF-PT2 frequencies are in good 

agreement with the published rovibrational calculations.  

 

Table 4 shows the CCSD(T)/cc-pVTZ calculated H–H frequency shifts of the M+–

H2 complexes. Harmonic red shifts are calculated with respect to the harmonic 

frequencies of isolated H2. The PT2-VSCF red shifts are calculated with respect to the 

diagonal frequencies of isolated H2. The experimental H–H stretching frequency of 

molecular H2 is 4161.17 cm-1.41 The VSCF-PT2 frequencies capture the trends in the 

experimental red shifts both qualitatively and quantitatively.  

 

The binding energies (De) of the M+–H2 complexes are calculated as De = [total 

Energy (M+ and H2 fragments)] – [total Energy (M+–H2 complex)]. The ZPE-corrected 

binding enthalpy (D0) is the sum of De and "ZPE. The CCSD(T)/cc-pVTZ M+–H2 

binding energies are given in Table 5. Theory and experiment are in good agreement, 
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with errors in the calculated values in the range of 0.3 to 0.6 kcal/mol, well below 

chemical accuracy (~1 kcal/mol). The trend in binding energies is also captured, with the 

binding energies in the order Li > B > Na > Al. H2 binds weakly to these cations, with the 

CCSD(T) D0 ranging from 0.93 to 4.48 kcal/mol.  

 

The values of D0 and R follow the expected inverse relationship, as the D0 values 

increase nearly linearly as the R values of the M+–H2 complexes decrease, as shown in 

Figure 3. The M+–H2 symmetric stretching frequencies, !3, are linearly correlated with D0 

as shown in Figure 4. This is to be expected, as the !3 mode is the one that leads to the 

dissociation of the M+–H2 complex into H2 molecule and a metal cation.  

 

Based on the binding energies, one might predict the red shift associated with the 

H–H stretching frequency to be in the order Li+–H2 > B+–H2 > Na+–H2 > Al+–H2, since 

this is the order in which the M+–H bond energy decreases. That is, one might expect a 

concomitant decrease in the H–H bond energy and frequency based on common bond 

distance-bond energy relationships. However, as shown in Table 4 and in Figure 5, the 

observed red shifts are in the order B+–H2 > Li+–H2 > Na+–H2 > Al+–H2. The main 

disagreement between the red shifts and the binding energies occurs for Li+ versus B+. In 

addition, the red shifts induced by Na+ versus Al+ are much closer to each other than 

would be predicted based on the corresponding binding energies.  
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In an attempt to understand the relationship between the observed metal-H2 

binding energies and the red shifts in the H–H frequencies that are observed upon 

complexation, the symmetry adapted perturbation theory (SAPT) method that was 

developed by Jeziorski, Szalewicz and co-workers36 is employed as an appealing 

interpretive tool. The SAPT method is based on many body perturbation theories and is 

therefore expected to provide relative energies that are as accurate as CCSD(T).  

 

The SAPT total interaction energies and the corresponding components for the 

four complexes of interest here are summarized in Table 6. For convenience, the 

CCSD(T) binding energies (excluding zero point vibrational corrections) and H–H red 

shifts are included in this table as well. First, note that the total SAPT interaction energies 

are in very good agreement with the CCSD(T) binding energies. This lends credence to 

employing the SAPT energy decomposition. Now, note that each of the attractive terms 

in Table 6, those that contribute to bonding interactions (Coulomb, induction, dispersion, 

and charge transfer), demonstrate the same trend as do the red shifts in the H–H 

frequencies, not the trend followed by the M–H binding energies. That is, those 

interactions that one would conceptually associate with binding demonstrate the expected 

relationship with the weakening of the H–H bond. The fact that the charge transfer 

essentially follows the same trend (except for the very small values of Na and Al) 

supports the conjecture by Bieske and co-workers regarding the role of charge transfer. 

However, charge transfer is certainly not the whole, or even the most important part of 

the story, since the largest contribution to binding of each metal to H2 comes from the 
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induction interaction. The sum of the four attractive contributions, labeled “total 

attraction” in Table 6, follows the same trend as the H–H frequency red shifts. 

 

On the other hand, the repulsive terms, dominated by the exchange repulsion, are 

much larger for B than for the other metals. These repulsive terms more than counter 

balance the attractive terms that favor B over Li for binding to H2. So, as is usually the 

case, the net binding is a balance between attractive and repulsive contributions, and in 

this case, the balance results in stronger net binding of H2 to Li than to B. 

 

The total electron density maps and the ESP atomic charges for each of the M+–

H2 complexes are shown in Figure 6. There are two interesting trends apparent in this 

figure. First, the electron density shifts upon complexation, as embodied in the ESP 

charges, from H2 to M+, is in the order B > Li > Na ~ Al. This is the same order that is 

observed for the H–H frequency red shifts and is consistent with the foregoing 

discussion. Similarly, one can see from the total density maps that the delocalization of 

charge follows the same trend. This trend in electron density reflects the importance of 

both induction and charge transfer, as noted in the previous paragraphs.  

 

IV. Conclusions 

 

The theoretical study of anharmonic molecular vibrations and binding energies of 

Li+–H2, Na+–H2, B+–H2 and Al+–H2 complexes using the VSCF method corrected for 
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second order perturbation theory have been presented. The CCSD(T) red shifts and the 

predicted M+–H2 binding energies are in excellent agreement with the experimental 

values. The unusual relationship between the experimentally observed binding energies 

and red shifts in the H–H vibrational frequencies is also well reproduced by theory. The 

fact that the trends in the red shifts do not reflect the binding energy trends is interpreted, 

using the SAPT method, in terms of a balance between opposing attractive and repulsive 

interactions.  

 

The anharmonic corrections to the harmonic frequencies are rather different for 

the three vibrational modes in these M+–H2 complexes.  For example, the ratio of the 

VSCF-PT2/harmonic frequencies is 0.94 for the H-H stretch, while this ratio ranges from 

0.74 to 0.86 for the symmetric stretch versus 0.87 to 0.94 for the antisymmetric stretch.  

This means that one universal scaling factor to scale the harmonic frequencies would not 

capture the actual anharmonicity that is present in the complexes.  So, while calculating 

VSCF frequencies is more computationally challenging than employing a simple scale 

factor, the VSCF approach is more accurate. 
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Table 1.  Selected CCSD(T) M+–H2 geometric parameters, with the cc-pVTZ basis set. 

M+–H2 Re(Å)a R0(Å)b rHH(Å) "rHH(Å)c 

Li+–H2 2.018 2.056d 0.751 0.008 

B+–H2 2.242 2.262e 0.756 0.013 
     

Na+–H2 2.469 2.493f 0.748 0.005 

Al+–H2 2.987 3.035g 0.747 0.004 

a,b The distance between M+ and the midpoint along H–H bond. Experimental values are 

R0; calculated values are Re. 
c H!H bond length (rHH) changes ("rHH) are taken relative to isolated H2. The isolated 

H!H bond distances is 0.743 Å at CCSD(T) with the cc-pVTZ basis. 
d Reference15 
e Reference16 
f Reference17 

g Reference18 
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Table 2. The CCSD(T)/cc-pVTZ contribution of internal coordinates to the normal 

coordinate force constant for Li+–H2. 

    

Coordinate System 

Coordinate 

H–H 

symmetric 

stretching 

(!1) 

Li+–H2 

antisymmetric 

stretching 

(!2) 

Li+–H2  

symmetric 

stretching 

(!3) 

2-bond-1-angle  1-2 bond distance – 0.128 – 0.708 0.786 

 1-3 bond distance – 0.128    0.708 0.786 

 2-1-3 bond angle – 0.357  0.000 – 0.075 

     

3-bond  1-2 bond distance – 0.128 – 0.708 0.786 

 1-3 bond distance – 0.128 0.708 0.786 

 2-3 bond distance – 1.409 0.000 0.002 

2 3 

1 
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Table 3. Comparison of calculated CCSD(T)/cc-pVTZ frequencies (cm-1) with the 

available experimental data.  

M+–H2 Harmonic PT2-VSCF 
Other 

Calculations Experimental 

Li+–H2   Rovibrationala  

!1 4291 4045 N/A 4053d 
!2 695 652 646 N/A 
!3 478 400 426 N/A 
     

B+–H2     

!1 4212 3964 N/A 3941e 
!2 515 480 N/A N/A 
!3 356 306 N/A NA 
     

Na+–H2   Rovibrationalb  

!1 4337 4092 4098 4094b 
!2 533 492 485 N/A 
!3 307 242 246 N/A 
     

Al+–H2   Rovibrationc  

!1 4348 4104 4099 4095c 
!2 364 318 283 N/A 
!3 181 134 153 N/A 
     

H2     

!1 4409 4166 N/A 4161f 

a"Reference39 
b Reference17 
c Reference18 
d Reference15 
e Reference16 
f Reference41 
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Table 4.  Calculated CCSD(T)/cc-pVTZ H–H stretching (!1) frequency red shifts (cm-1) 

of M+–H2 complexes. Harmonic red shifts are calculated with respect to the harmonic 

frequency of isolated H2. PT2-VSCF red shifts are calculated with respect to the diagonal 

frequency of isolated H2.  

M+H2 Harmonic PT2-VSCF Experimental 

B+–H2 197 202 221a 

Li+–H2 119 121 108b 

Na+–H2 72 74 67c 

Al+–H2 62 62 66d 

a Reference16 

b Reference15 
c Reference17 
d Reference18 
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Table 5. CCSD(T) ZPE-corrected binding energy (D0) in kcal/mol for the M+–H2 

complexes with cc-pVTZ basis set.  

 Li+–H2 B+–H2 Na+–H2 Al+–H2 

De 5.81 4.02 3.04 1.49 

%ZPE 1.33 0.83 0.94 0.56 

D0 4.48 3.19 2.09 0.93 
     

Experimental D0 4.79a 3.8 0.2b 2.45 0.2c 1.35 0.15d 

a From rovibrational calculations42 
b Reference43 
c Reference44 
d Reference45 

! 

±

! 

±

! 

±
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Table 6. SAPT/cc-pVTZ interaction energy components (kcal/mol) for M+–H2.  

 Li+–H2 B+–H2 Na+–H2 Al+–H2 

SAPT     
Electrostatic/Coulomb 1.71 3.95 1.66 1.30 

Polarization/Induction 8.04 8.62 4.58 2.12 

Dispersion 0.14 2.62 0.12 1.07 

Charge Transfer 1.26 4.72 -0.16 0.67 

Exchange -2.69 -10.90 -1.41 -2.77 

Exchange-Induction -2.51 -3.95 -1.69 -0.64 

Exchange-Dispersion -0.02 -0.25 -0.01 -0.09 

Total Attractiona 11.15 19.91 6.20 5.16 

Total Repulsionb -5.22 -15.10 -3.11 -3.50 

Eint (SAPT) 5.93 4.81 3.09 1.65 

     

CCSD(T)/cc-pVTZ     
De 5.81 4.02 3.04 1.49 

H–H Red Shift (VSCF) in cm-1 121 202 74 62 

aSum of Electrostatic + Polarization + Dispersion + Charge Transfer 
bSum of Exchange + Exchange-Induction + Exchange-Dispersion 
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(a) 

 

 
(b) 

 
Figure 1. (a) The H–H distance plotted as a function of displacement made along mode 

!2 (Li+–H2 antisymmetric stretching); (b) The H–H distance plotted as a function of 

displacement made along mode !3 (Li+–H2 symmetric stretching). The displacements are 

made in Cartesian (black), 3-bond internal (red) and 2-bond-1-angle internal (green) basis 

for Li+–H2 at the CCSD(T) level of theory with the cc-pVTZ basis set (at small amplitude 

displacements). 
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Figure 2. (a) The vibrational motion in normal mode vectors and diagonal VSCF in 2-

bond-1-angle internal coordinates for the M+–H2 complexes; (b) The vibrational motions 

depicted by the diagonal VSCF generated using 3-bond internal coordinates. 
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Figure 3. Graph of distance between M+ and the midpoint along H–H bond (R) vs. the 

ZPE-corrected binding energy (D0) for Li+–H2 (red), B+–H2 (green) Na+–H2 (yellow), and 

Al+–H2 (purple). The calculated values at CCSD(T) level of theory with cc-pVTZ basis 

set, are displayed in circles and the experimental values are displayed in crosses. The 

binding energies (De) of the M+–H2 complexes are calculated as follows. The De = [Total 

Energy (M+ and H2 fragments)] – [Total Energy (M+–H2 molecule)]. 
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Figure 4. The graph of M+–H2 symmetric stretching frequency (!3) vs. the ZPE-corrected 

binding energy (D0) for Li+–H2 (red), B+–H2 (green) Na+–H2 (yellow), and Al+–H2 

(purple) complexes computed at CCSD(T) level of theory with cc-pVTZ basis set. The 

binding energies (De) of the M+–H2 complexes are calculated as follows. The De = [Total 

Energy (M+ and H2 fragments)] – [Total Energy (M+–H2 molecule)]. The zero-point 

energy corrections ("ZPE) are calculated using PT2-VSCF frequencies. The ZPE-

corrected binding energy (D0) is given as the sum of De and "ZPE. 
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Figure 5. Graph of CCSD(T)/cc-pVTZ H–H stretching frequency red shifts (–"!H–H) vs. 

the ZPE-corrected binding energy (D0) for Li+–H2 (red), B+–H2 (green) Na+–H2 (yellow), 

and Al+–H2 (purple) complexes computed at basis set. The binding energies (De) of the 

M+–H2 complexes are calculated as follows. The calculated values are displayed in 

circles and the experimental values are displayed in crosses. 
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Figure 6. The total electron density maps and the electrostatic potential (ESP)-derived 

MP2/cc-pVTZ atomic charges for each of the studied complexes. 
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CHAPTER 3. ANHARMONICITY OF WEAKLY BOUND  

Li+!(H2)n (n = 1!3) COMPLEXES 

 

A paper published in The Journal of Physical Chemistry A 

Nuwan De Silva, Bosiljka Njegic, and Mark S. Gordon 

 

Abstract 

 

The anharmonicity of Li+–(H2)n (n = 1, 2, and 3) complexes is studied using the 

vibrational self-consistent field (VSCF) approach. The H–H stretching frequency shifts of 

Li+–(H2)n complexes are calculated with the coupled-cluster method including all single 

and double excitations with perturbative triples (CCSD(T)) level of theory with the cc-

pVTZ basis set. The calculated IR active H–H stretching frequency in Li+–H2, Li+–(H2)2 

and Li+–(H2)3 is red shifted by 121, 109 and 96-99 cm-1, respectively, relative to that of 

isolated H2. The calculated red shifts and their trends are in good agreement with the 

available experimental data.  

 

I. Introduction 

 

In recent years, hydrogen has been considered to be a promising fuel source that 

could meet the future demand for a clean and renewable form of energy.1,2 However, the 

lack of suitable materials for the storage of molecular hydrogen is a challenge that needs 
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to be resolved.  Absorbing molecular hydrogen into solid storage materials such as metal 

hydrides,3 complex hydrides,4 metal organic frameworks (MOF),5 and metal cation-

doped zeolites6 is a promising technique to overcome the storage problem.  

 

There is great interest in developing a viable hydrogen storage material for 

hydrogen powered vehicles which contain a gravimetric density of about 6 wt % 

hydrogen.2 Since the Li atom is lightweight, various Li-doped materials have been 

proposed. For instance, Denq et al. suggested a new Li-doped pillared single-wall carbon 

nanotube.7 Furthermore, lithium cation-dihydrogen (Li+–(H2)n) complexes are simple 

charged polyatomic molecules that are important for the hydrogen storage problem. The 

charge-quadrupole interaction between the charge on the Li+ and the quadrupole moment 

of the H2 (1!g
+) can be useful to understand the various aspects of the design or 

development of novel materials for hydrogen storage.3-6  

 

The properties of Li+–(H2)n complexes have been studied experimentally and 

theoretically. Experimentally, Bieske, et al. have reported rotationally resolved infrared 

spectra of Li+–(H2)n (n=1–3) complexes in the H–H stretch region.8 They found that the 

Li+–(H2)n (n=1–3) complexes exhibit a H–H stretch band with a center that is red-shifted 

by 108, 106, and 100"cm#1, for n = 1, 2, 3, respectively, relative to the stretching 

fundamental frequency of the bare H2 molecule.   
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Theoretically, Rao et al. have carried out a study using Hartree!Fock (HF) and 

fourth-order perturbation theory (MP4) with the 6-311G** basis set to explore the 

amount and nature of hydrogen uptake by both the neutral and cationic forms of Li.9 Rao 

et al. have found that the Li+ ion can hold at least six H2 molecules in the first solvation 

(storage) shell. Davy et al. have studied the geometry, vibrational frequencies and 

complexation energies of Li+–(H2)n clusters up to four H2 molecules using the coupled 

cluster method, including all single and double excitations (CCSD) with the 6-311G(d,p) 

basis set.10 Davy et al. have reported the zero point energy (ZPE) corrected bond 

dissociation energy (D0) of complexation is in the range 2.74#4.32 kcal mol#1 per H2 

molecule. The Li+ cation was shown to be able to bind up to six H2 molecules with a 

mean bond dissociation energy (De) of 4.77 kcal mol#1 at the MP2/6-311G(d,p) level of 

theory.11 

 

A previous study12 by the authors analyzed the anomalous trends in the 

vibrational spectra of a series of M+–H2 (M+ = Li+, Na+, B+, and Al+) complexes using the 

vibrational self-consistent field (VSCF) method,13-16 augmented by second order 

perturbation theory (PT2-VSCF).17 In the present work, the PT2-VSCF approach is 

employed to study molecular hydrogen clustering around the Li+ cation. The aim of the 

current work is to compare the structures of the Li+-hydrogen clusters and the associated 

vibrational spectra. The results are compared with the experimental vibrational data, 

including the bond lengths, the frequency of the H#H stretching mode, and the binding 

energies. The organization of the paper is as follows. Section II describes the 



www.manaraa.com

 

 

54 

computational details. In section III, the geometries and complexation energies and the 

anharmonic frequencies of the Li+–(H2)n complexes are discussed. Concluding remarks 

are summarized in section IV. 

 

II. Computational Details 

 

All calculations were performed using the GAMESS18,19 electronic structure code, 

and molecules were visualized with MacMolPlt.20 Electronic structure calculations were 

performed on Li+–H2, Li+–(H2)2 and Li+–(H2)3 using the coupled-cluster method 

including all single and double excitations with perturbative contributions from 

connected triple excitations (CCSD(T))21,22 with the cc-pVTZ 23 basis set.  

 

The geometry optimizations were carried out in C2v, D2d and D3 symmetries, 

respectively, for the Li+–H2, Li+–(H2)2 and Li+–(H2)3. The CCSD(T) geometry 

optimizations were performed using numerical gradients. The optimized structures were 

tightly converged with the largest component of the numerical gradient less than 0.00001 

Hartree/Bohr. The Hessian (matrix of energy second derivatives) was calculated and 

diagonalized at the optimized geometries. Hessians were calculated fully numerically 

with a 0.010 Bohr displacement step size for the Li+–H2 and Li+–(H2)3 molecules and a 

0.001 Bohr displacement step size for the Li+–(H2)2  molecule at the CCSD(T)/cc-pVTZ 

level of theory. All stationary points were characterized as true minima by confirming 

that the corresponding Hessian is positive definite.  
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To obtain the anharmonic frequencies, PT2-VSCF calculations were carried out 

on the potential energy surface (PES) that was generated on a 16 $ 16 points grid, by 

making displacements along normal mode vectors expressed as a sum of simple internal 

coordinate contributions.24 For Li+–H2 three bonds were used to describe the normal 

modes.12 For Li+–(H2)2 six bonds, an angle, and two dihedral angles were used. The Li+–

(H2)3 complex was described by the nine bonds, two angles, and four dihedral angles. A 

series of calculations were carried out in which the spacing of the PES grid points along 

each vibrational mode was systematically increased until the diagonal frequencies 

converged, as described by Njegic and Gordon.25 As described previously,12 special care 

was used for all of the Li+–H antisymmetric stretching modes of the Li+–(H2)n 

complexes.  

  

The IR and Raman intensities were evaluated using the nuclear derivatives of the 

dipole moment and the static polarizability, respectively, at the HF/cc-pVTZ level using 

the CCSD(T)/cc-pVTZ optimized geometries. To obtain bond dissociation energies that 

can be related to experiment, D0, ZPE corrections have been obtained using the 

anharmonic frequencies (PT2-VSCF) at the CCSD(T)/cc-pVTZ level of theory.  
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III. Results and Discussion 

 

As shown in Figure 1, the Li+–H2, Li+–(H2)2 and Li+–(H2)3 complexes adopt C2v, 

D2d and D3 structures, respectively, at the CCSD(T)/cc-pVTZ level of theory. Li+–H2 has 

a T-shaped structure (C2v). In Li+–(H2)2, the H2 subunits are in a T-shaped arrangement 

opposite to Li+ and perpendicular to each other (D2d), with their centers of mass located 

on a straight line that passes through the Li center. In Li+–(H2)3, the three H2 sub units are 

tilted relative to each other (D3), and their centers of mass are the vertices of an 

equilateral triangle. In the three Li+–(H2)n complexes the centers of mass of the H2 

subunits are distributed over a sphere around the Li+ in such a way that the repulsion 

among H2 subunits is minimized.  

 

Table 1 summarizes selected CCSD(T)/ cc-pVTZ optimized geometric 

parameters. The distance between Li+ and the H–H bond midpoint (R) increases with the 

size of the Li+–(H2)n cluster. The R values are obtained experimentally via vibrationally 

averaged separations (R0), whereas calculated values are equilibrium separations (Re). As 

one would expect, R0 is larger than Re. The H–H bond length changes (ΔrHH) are quoted 

relative to isolated H2, whose calculated bond distance is 0.743 Å. The H–H and ΔrHH 

distances decrease as the size of the Li+–(H2)n cluster increases. Successive addition of 

the second and third H2 molecules leads to a slight progressive weakening of the Li+---H2 

bonds, as seen by the 0.0041 and 0.0053"Å increases in the intermolecular bond lengths. 
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The calculated CCSD(T)/cc-pVTZ harmonic,  anharmonic (VSCF-PT2) 

vibrational frequencies, IR and Raman intensities along with other available published 

calculations and experimental data are tabulated in Tables 2 (for n = 1,2) and 3 (for n = 3) 

for the Li+–(H2)n complexes. All three vibrational modes of Li+–H2 are assigned as 

stretching modes. The Li+–(H2)2 complex has six stretching, two bending, and a torsional 

mode. The Li+–(H2)3 complex has nine stretching, three bending, and three torsional 

modes. In general, 3n symmetric stretching modes can be identified in the Li+–(H2)n 

complexes, where n is the number of H2 molecules in the complex. 

 

The vibrational normal mode vectors of the Li+–H2, Li+–(H2)2, and Li+–(H2)3, are 

shown in Figures 2, 3, and 4, respectively. The three normal mode vectors of Li+–H2 are 

H–H symmetric stretching (%1), Li+–H antisymmetric stretching (%2), and Li+–H 

symmetric stretching (%3). In general, there are n H–H stretching modes and 2n Li+–H 

stretching modes in each Li+–(H2)n complex. The rest of the vibrational modes (for n = 2, 

3) are bending or torsional modes.   

 

Vibrational molecular motions in Li+–(H2)n clusters can be assigned, based on the 

normal mode vectors, to one of the following three main vibrational regions: H–H stretch 

("4000 cm–1), Li+–H2 stretch ("500 cm–1), and bending and torsion (below "100 cm–1). 

There is excellent agreement (within 20 cm–1) of the PT2-VSCF frequencies with the 

available experimental data. Upon the addition of the second and third H2 molecules, the 

slight increase in the intermolecular bond length is consistent with the trend in the 
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calculated H–H stretching (A1) PT2-VSCF frequencies [n = 1: 4045"cm#1; n = 2: 

4058"cm#1; n = 3: 4081"cm#1]. In each Li+–(H2)n complex, the highest H–H harmonic 

stretching frequency undergoes an anharmonic shift (relative to the harmonic 

frequencies) of about 200 cm-1, which is the largest anharmonicity associated with any 

particular mode. 

 

The highest vibrational frequency mode of Li+–(H2)2 and Li+–(H2)3 is Raman 

active but IR inactive. The Raman scattering of the highest vibrational frequency 

increases as n increases. The H–H stretching modes for the Li+–(H2)n complexes with A1, 

B2, and E symmetry are both IR and Raman active. The IR active H–H stretching mode 

gives the most intense IR peak in each of the Li+–(H2)n complexes.  

 

Table 4 shows the CCSD(T)/cc-pVTZ calculated IR active H–H frequency shifts 

of the Li+–(H2)n complexes. Harmonic red shifts are calculated with respect to harmonic 

frequencies of the isolated H2 (4409 cm-1). The PT2-VSCF red shifts are calculated with 

respect to the diagonal frequencies of isolated H2 (4166 cm-1). The experimental H–H 

stretching frequency of molecular H2 is 4161.17 cm-1.26 The VSCF-PT2 frequencies 

capture the trends in the experimental red shifts both qualitatively and quantitatively. 

Relative to the isolated H2 molecule, the calculated PT2-VSCF red shifts for Li+–H2, Li+–

(H2)2, and Li+–(H2)3 are 121 cm-1, 109 cm-1 and 96-99 cm-1, respectively, at the CCSD(T) 

/cc-pVTZ level of theory.  

 



www.manaraa.com

 

 

59 

The binding energies per H2 (De) of the Li+–(H2)n complexes are calculated as De 

= ([total energy (Li+ and H2 fragments)] – [total energy (Li+–(H2)n complex)])/n. The zero 

point energy corrections per H2 (&ZPE) are calculated using the PT2-VSCF frequencies. 

The ZPE-corrected binding enthalpy per H2 (D0) is the sum of De and &ZPE. The 

CCSD(T)/cc-pVTZ Li+–(H2)n binding energies are given in Table 5. The calculated D0 

and other calculated data in the literature are in good agreement. According to Table 5, 

for all of the complexes studied, D0 decreases, as expected, with an increasing number of 

H2 units. This trend is consistent with the increase in the Re of the complex with an 

increasing number of H2 units. The vibrational information also reveals how the extent of 

the H–H intramolecular interactions is related to that of the corresponding Li+–H2 bond. 

A stronger Li+–H2 bond implies that electron density is transferred from the H2 to the Li+, 

which results in a weakening of the H–H bond, and, therefore, a softer H–H stretching 

mode. According to the calculated interaction energies, one would predict that the red 

shift associated with the H–H stretching frequency varies in the order Li+–(H2)3 < Li+–

(H2)2 < Li+–H2  due to the delocalization of the H–H electron density toward the metal 

cation, with a consequent weakening of the H–H bond, compared to the free H2 molecule. 

Addition of H2 units to the system reduces the delocalization contribution per H2 toward 

the Li+. For instance, the highest H–H stretching frequency of a given complex is lower 

than the free H–H stretching frequency, but as the number of H2 subunits increases, that 

frequency approaches that of the free molecule.   
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IV. Conclusions 

 

The PT2-VSCF approach is employed at the CCSD(T) level of theory to compute 

the vibrational spectrum of Li+–(H2)n complexes, for n = 1, 2, 3. The H2 subunits are 

predicted to be weakly bound (~5 kcal/mol) to the lithium cation. The strength of the 

metal-H2 complex interaction mainly depends on the number of H2 subunits attached to 

the metal cation, where the interaction decreases with increasing n. The calculated H–H 

frequency red shifts are in good agreement with the available experimental data. The 

downward shifts of the H–H frequency are correlated with the complexation energy per 

H2. The H–H stretching frequency varies according to the delocalization of the H–H 

electron density toward the metal cation and the consequent weakening of the H–H bond, 

compared to the frequency of the isolated H2 molecule. The amount of delocalization of 

the electron density per H2 subunit towards the metal cation decreases with n, resulting in 

a less red-shifted H–H stretching frequency.  

 

In the Li+–(H2)n complexes (n = 1,2,3), the modest 5 kcal/mol interaction energy 

might be suitable for a hydrogen storage system with favorable H2 loading and unloading 

kinetics. In order to load or unload the H2 to/from the Li+, one needs to pay attention to 

the Li+–H stretching modes. Among the Li+–H stretching modes, the most IR active 

modes (%3 of Li+–H2, %5 of Li+–(H2)2, and degenerate %7 and %8 of Li+–(H2)3),  are 

responsible for dissociation of an H2 from the Li+ Therefore, one might increase the 



www.manaraa.com

 

 

61 

temperature or provide the correct amount of energy to the most IR active Li+–H 

stretching modes in order to release H2 and vice versa.  
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Table 1. Selected CCSD(T) geometric parameters of Li+–(H2)n complexes, with the cc-

pVTZ basis set  

Molecule Re(Å)a,b R0(Å)a,b rHH(Å) ΔrHH(Å)c 

Li+–H2 2.0181d  2.056e  0.7514d  0.0087d  

Li+–(H2)2 2.0222  0.7511 0.0084 

Li+–(H2)3 2.0275  0.7506 0.0079 

a The distance between Li+ and the midpoint along H#H bond. 
b Experimental values are R0; calculated values are Re.  
c H#H bond length (rHH) changes (&rHH) are taken relative to isolated H2. The isolated 

H#H bond distances is 0.7427 Å at CCSD(T) with the cc-pVTZ basis. 
d Reference 12. 
e Reference8. 
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Table 2. CCSD(T)/ cc-pVTZ vibrational frequencies (cm–1) of Li+–H2 and Li+–(H2)2 

a Reference12. b Reference8. c Reference27. 

Molecule Symmetry 
IR intensity 

(Debye2/amu-Å2) 

Raman intensity 

(Å4/amu) 

Harmonic 

  frequency 

PT2-VSCF 

frequency 

Experimental 

frequency 

Li+–H2       

!1 A1   H–H       sym str 11.3 170.3 4291 4045a  4053b 

!2 B1   Li+–H    antisym str 0.1 15.9 695 652a  646c 

!3 A1   Li+–H    sym str 2.7 10.0 478 400a  426c 

       

Li+–(H2)2       

!1 A1    H–H      sym str 0.0 264.9 4295 4058  

!2 B2    H–H     antisym str 13.6 40.7 4293 4057 4055b 

!3 E    Li+–H    antisym str 0.1 12.4 690 643  

!4 E    Li+–H    antisym str 0.1 12.4 690 642  

!5 B2   Li+–H    antsym str 3.3 0.2 521 461  

!6 A1   Li+–H    sym str 0.0 8.6 420 365  

!7 B1  torsion 0.0 28.5 66 24  

!8 E    H2–Li+–H2 bend 2.1 0.6 40 21  

!9 E    H2–Li+–H2 bend 2.1 0.6 40 22  

64 
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Table 3. CCSD(T)/ cc-pVTZ vibrational frequencies (cm–1) of Li+–(H2)3 

Molecule Symmetry 
IR intensity 

(Debye2/amu-Å2) 

Raman intensity 

(Å4/amu) 

Harmonic 

frequency 

PT2-VSCF 

frequency 

Experimental 

frequency 

Li+–(H2)3       

!1 A1   H–H     sym str 0.0 368.8 4302 4081  

!2 E     H–H     antisym str 7.2 30.1 4300 4067 4060a 

!3 E     H–H     antisym str 7.2 30.1 4300 4070 4060a 

!4 E     Li+–H    antisym str 0.1 16.3 686 630  

!5 E    Li+–H    antisym str 0.1 16.3 686 627  

!6 A2   Li+–H    antisym str 0.2 0.0 680 615  

!7 E     Li+–H    antisym str 2.0 2.2 482 444  

!8 E     Li+–H    antisym str 2.0 2.2 482 440  

!9 A1  Li+–H    sym str 0.0 23.8 406 337  

!10 A1  torsion 0.0 6.6 70 69  

!11 E   H2–Li+–H2 bend 0.0 5.9 69 65  

!12 E   H2–Li+–H2 bend 0.0 5.9 69 68  

!13 A2  H2–Li+–H2 bend 1.8 0.0 46 55  

!14 E   torsion 0.6 0.4 24 13  

!15 E torsion 0.6 0.4 24 20  
a Reference8. 
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Table 4. Calculated CCSD(T)/cc-pVTZ H–H symmetric stretching frequency red shifts 

(cm-1) of Li+–(H2)n complexesa 

Molecule harmonic PT2-VSCF  experimentalb 

Li+–H2 119 121 108 

Li+–(H2)2 116 109  106 

Li+–(H2)3 109 96-99 100 

a Harmonic red shifts are calculated with respect to the harmonic frequency of isolated H2 

(4409 cm-1). PT2-VSCF red shifts are calculated with respect to the diagonal frequency 

of isolated H2 (4166 cm-1). 
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Table 5. CCSD(T)/cc-pVTZ ZPE-corrected binding energy (D0) per H2 in kcal/mol for 

the Li+–(H2)n complexes. 

 Li+–H2 Li+–(H2)2 Li+–(H2)3 

De 5.81 5.70 5.57 

!ZPE 1.33 1.45 1.55 

D0 4.48a  4.26 4.02 
    

Other calculations D0 4.79b 4.32c 4.02c 3.74c 
a Reference12. 

b From rovibrational calculations.28 
c From CCSD/6-311G(d,p) calculations; ZPE correction with harmonic frequencies.10 
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Figure 1. Optimized geometries of Li+–(H2)n complexes computed at CCSD(T) level of 

theory with cc-pVTZ basis set. 
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Figure 2. Vibrational normal mode vectors of Li+–H2 
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Figure 3. Vibrational normal mode vectors of Li+–(H2)2 
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Figure 4. Vibrational normal mode vectors of Li+–(H2)3 
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Figure 4. (continued) 
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CHAPTER 4. SOLVENT INDUCED SHIFTS IN THE UV 

SPECTRUM OF AMIDES 

 

A paper published in The Journal of Physical Chemistry A 

Nuwan De Silva, Soohaeng Y. Willow, and Mark S. Gordon 

 

 

Abstract 
 

Solvent effects on the electronic spectra of formamide and trans-N-

methylacetamide are studied using four different levels of theory: singly excited 

configuration interaction (CIS), equations of motion coupled-cluster theory with singles 

and doubles (EOM-CCSD), completely renormalized coupled-cluster theory with singles 

and doubles with perturbative triple excitations (CR-EOM-CCSD(T)), and time 

dependent density functional theory (TDDFT), employing small clusters of water 

molecules. The simulated electronic spectrum is obtained via the molecular dynamics 

simulations with 100 waters modeled with the effective fragment potential method and 

exhibits a blue-shift and red-shift, respectively, for the n!!* and !nb!!* vertical 

excitation energies, in good agreement with the experimental electronic spectra of 

amides. 
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I. Introduction 

 

The study of solvent effects on the electronic absorption spectra of amides 

provides an excellent benchmark for implementing an accurate solvent representation of 

proteins. Therefore, the electronic transition energies of formamide (HCONH2) and 

trans-N-methylacetamide (NMA) have been of considerable interest, both 

experimentally1-6 and theoretically.7-12 The previous studies were motivated by the role 

of amides as a model for the underlying repeating unit in protein backbones. HCONH2 is 

an important prototype molecule, being the simplest unsubstituted unit to contain the 

peptide linkage in proteins. Meanwhile, NMA can serve as the simplest substituted unit 

in the peptide linkage. HCONH2 and NMA provide an important prototype for the 

calculation and interpretation of electronic excitation energies of proteins. Interactions 

between these prototype molecules and surrounding water molecules can give insight into 

the complex intermolecular interactions that occur when proteins are solvated. 

 

Experimentally, the gas phase electronic spectra of amides are well understood. In 

general, amides exhibit five main absorption bands in the gas phase:2 (1) an intense band, 

the V1 band, due to the !nb"!* transition; (2) a less intense band, the W band (due to the 

n"!* transition); (3), (4) two sharp bands, R1 and R2 (due to Rydberg transitions); and 

(5) a Q band (due to Rydberg transitions with a superposition of two Rydberg 

states).6,13,14 
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The absorption spectra of amides in the condensed phase exhibits interesting 

solvatochromic effects depending on the type of amide and the solvent. In the electronic 

absorption spectrum of HCONH2 in aqueous solution the n"!* and !nb"!* transitions 

were found to be blue- and red-shifted by 0.27 and 0.50 eV, respectively, relative to the 

gas phase HCONH2.4,5 Nielsen and Schellman4 measured the absorption curves for a 

series of amides including NMA in cyclohexane and water. The position of the !nb"!* 

band in NMA was measured, and a very small red-shift was observed when changing the 

solvent from cyclohexane to water (0.07 eV). Considering the !nb"!* excitation energy 

of NMA in gas phase (6.81 eV) measured by Kaya et. al.3 and NMA in aqueous solution 

(6.67 eV) measured by Nielsen et. al.4, a 0.14 eV red-shift was observed in the aqueous 

phase. The experimental gas phase data for the n"!* transition of NMA is not available. 

However, when NMA is placed in cyclohexane the n"!* band appeared to be 5.46 eV,15 

and in aqueous solution, the n"!* band shifted to 5.85 eV4 with a 0.39 eV blue-shift. 

The electronic spectrum shifts in different directions and with different magnitudes, 

depending on the nature of the solvent and solute-solvent interactions.16-18  

 

Two approaches are commonly used to model solvent effects, the continuum 

(implicit) approach19,20 and the discrete (explicit) approach.21,22 The continuum model 

requires some choice for the geometry of the molecular cavity, which is intended to 

reflect the size of the solvated molecule. Popular continuum methods include the 

polarizable continuum method (PCM),20,23 the conductor-like screening model 

(COSMO)24,25 the solvation model x (SMx),26-28 where x denotes a specific 
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parametrization of a particular solvent model, the solvation with volume polarization 

(SVP)29, and the self-consistent reaction field (SCRF) model.30 A review article for the 

continuum solvation models can be found in references.31,32 In the discrete approach, the 

individual solvent molecules are explicitly present, modeled either by some level of 

electronic structure theory or by a model potential. The individual solvent-solute 

interactions are explicitly accounted for.   

 

Both the continuum and discrete approaches have advantages and disadvantages. 

The continuum approach is relatively fast and is designed to mimic bulk properties of the 

solution. However, the continuum approach does not describe the specific interactions 

(e.g., hydrogen bonds) between the solute and solvent molecules. In addition, the 

continuum approach can be very sensitive to the cavity parameters. The discrete approach 

treats solute-solvent interactions explicitly. However, the discrete approach generally 

requires extensive configurational sampling. Therefore, the discrete approach can be 

computationally demanding, especially if fully ab initio potentials are used. 

 

Commonly used discrete methods include the effective fragment potential (EFP) 

method, the simple point charge/extended (SPC/E) method,33 and the three-, four-, and 

five-point transferable intermolecular potentials (TIP3P, TIP4P, and TIP5P),34,35 all-atom 

optimized potentials for liquid simulations (OPLS)-AA,36 dissipative particle dynamics 

(DPD),37 smooth particle hydrodynamics (SPH),38 and the particle-based simulation 

technique39 often called stochastic rotation dynamics (SRD).40 The approach taken in the 
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present work for representing the solvent explicitly is the effective fragment potential 

method for water (EFP1).41-43 The EFP1 method, which includes self-consistent 

polarization effects, has been shown to accurately treat the interactions between solute 

and solvent molecules.44-55 The EFP1 method, a quantum mechanics (QM)-based method 

that includes self-consistent induction, was introduced to study aqueous solvent effects. 

Most of the above discrete methods can be considered to be variants of quantum 

mechanics/molecular mechanics (QM/MM) simulations in which the electronic structure 

of the solute is treated as QM and the solvent molecules are treated as MM.56 

 

The physical properties of amide:solvent complexes, such as minima, hydrogen 

bond interactions, and the effect of hydration on the harmonic vibrational frequencies and 

internal rotation barrier, have been the subject of a large number of studies; e.g., 

HCONH2:solvent57-67 and NMA:solvent.66,68-74 The computational modeling of solvent 

effects on the electronic spectra of amides10,57-77 has primarily examined the effects of up 

to three explicit water molecules. The singly excited configuration interaction (CIS) 

method with a minimal STO-3G basis set was used to calculate the n-!* excited state of 

HCONH2 in the presence of one and two water molecules.75 These authors concluded that 

the formation of a hydrogen bond with the carbonyl oxygen of HCONH2 could 

destabilize the n-!* state and change the magnitude of the blue-shifted n"!* transition 

energy. The geometries of the ground state and the first excited singlet and triplet states 

of HCONH2 in vacuo and in the presence of three EFP1 water molecules were explored 

by Krauss and Webb76 using the multiconfigurational self-consistent-field (MCSCF) 
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method with the DH(d,p) basis set. The vertical transition of HCONH2 in vacuo and in 

the presence of three EFP water molecules was reported to be 5.66 eV and 6.14 eV, 

respectively. It was also shown that the EFP1 water calculations accurately reproduced 

the fully ab initio excited state geometry and the interaction energy between HCONH2 

and water. 

 

The complete active space self-consistent field (CASSCF) and 

multiconfigurational second-order perturbation theory (CASPT2) methods have been 

used to study the n-!* and !nb-!* states of HCONH2 with one water molecule, using a 

double-! plus polarization basis set.10 Relative to isolated HCONH2, the n-!* state was 

predicted to be blue-shifted by 0.18 eV upon the addition of a water molecule, while the 

!nb-!* state was predicted to be red-shifted by 0.15 eV. The CASSCF and CASPT2 

methods, with an ANO basis set, have also been used to calculate the ground state and 

excited state energies of HCONH2 in the presence of one, two, and three water 

molecules.67 The HCONH2 with one, two, and three water molecules undergoes a blue-

shift of 0.36, 0.48, and 0.50 eV, respectively, in the n"!* transition, whereas the !nb"!* 

transition undergoes a red-shift of 0.15, 0.15, and 0.25 eV, respectively, relative to 

isolated HCONH2. 

 

Besley and Hirst66 have reported a theoretical investigation of the solvent effects 

on the valence electronic spectra of NMA and HCONH2 using the CASSCF and CASPT2 

methods for the solute and a self-consistent reaction field model for the solvent. The 
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experimental n"!* and !nb"!* excitation energies were reproduced to within 0.15 eV 

accuracy. A red-shift was predicted for the !nb"!* excitation energy. However, in 

contrast to the experimental data, no significant blue-shift was found for the n"!* 

excitation energy. Recently, a polarizable embedding (PE) QM/MM method was 

developed by Olsen et al.78 They have computed gas-to-aqueous solvent induced shifts of 

the lowest n"!* vertical excitation energy in acetone and acrolein and the lowest !"!* 

vertical excitation energy in acrolein, pyridine, uracil, coumarin 151, and coumarin 153. 

They have used a QM/MM (PE-DFT) approach in which the solute is treated using DFT 

(CAM-B3LYP functional) and the solvent molecules are represented by a PE potential. 

The aug-cc-pVDZ basis set was used in the calculations of excitation energies of all the 

moilecules except a smaller 6-31++G* basis was used in the calculations on coumarin 

153. The PE model was applied by Sneskov et al. to the n"!* and !nb"!* excitation 

energies of HCONH2 and NMA in vacuum and water solution using the CCSDR(3 with 

the aug-cc-pVDZ basis set.79 Even though Sneskov et al. predicted acceptable solvent-

induced blue-shift n"!* transitions in both HCONH2 and NMA, they failed to predict 

the solvent-induced red-shift !nb"!* transitions in NMA within 0.15 eV accuracy. (The 

!nb"!* transition of NMA was predicted to give a large blue-shift  (+ 0.67 eV) instead of 

a small red-shift.). 

 

The temperature effects on the electronic spectra of amides (HCONH2, N-

methylformamide, acetamide, and NMA) have been studied using a combination of 

molecular dynamics (MD) simulations and TDDFT in the gas phase by Besley et. al.77 
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The valence n-!* and !nb-!* states were both predicted to have temperature-induced red-

shifts, 0.1#0.35 eV at 300 K, relative to 0 K. These authors have also calculated the 

electronic spectrum of HCONH2 in the presence of 16 water molecules around each gas 

phase MD configuration. Overall, a blue-shift was predicted for the n-!* state and red-

shift was predicted for the !nb -!* state of HCONH2(H2O)16, with respect to HCONH2. 

The mean values for the n-!* and !nb-!* excitation energies of HCONH2(H2O)16 are blue 

and red -shifted by +0.52 eV and #0.33 eV, respectively, compared to the gas phase at 

300 K. The authors also noted that structural changes in the amides contribute to the !nb-

!* red-shift. 

 

In the present study, solvent effects on the electronic absorption spectra of amides 

are considered for the n!!* and !nb!!* vertical excitations. The n!!* state originates 

primarily from a carbonyl oxygen lone pair n into the anti-bonding C=O !* orbital. 

Experimentally the n!!* excitation of amides exhibits a blue shift in an aqueous 

environment.4,5 The !nb!!* excitation from a non-bonding ! orbital into an anti-bonding 

!* orbital is particularly interesting, since the !nb!!* transition has an intense band and 

exhibits a red-shift in an aqueous environment.4,5 Since amides can act as models for the 

underlying repeating unit in a protein, understanding solvent effects on amides helps to 

design and develop an accurate solvent representation of proteins. In this article, a 

qualitative interpretation of solvent-induced shifts of amides is obtained via examination 

of the change in the solute HOMO and LUMO electronic energies of solute:water 

complexes at four different levels of theory: CIS, EOM-CCSD, CR-EOM-CCSD(T), and 
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TDDFT. QM/MM molecular dynamics simulations are employed to provide the 

simulated electronic spectrum and quantitative values of solvent-induced blue-shift and 

red-shift, respectively, for n"!* and !nb"!* vertical excitations using an explicit 

solvent model. An important aspect of this article is to demonstrate that the sophisticated 

EFP method can capture the observed solvent shifts. This is important since EFP has 

been shown previously to predict ground state properties at a level that is equivalent to 

MP2.49, 50, 80, 81 

 

II. Computational Details 

 

For QM-EFP applications, an EFP1 water is described by one-electron potentials, 

representing electrostatic (Coulomb), induction (polarization), and exchange repulsion + 

charge transfer, that are added to the QM Hamiltonian. The Coulomb interaction is 

modeled with multipoles (through octopoles) located at atoms and bond midpoints. The 

polarization effects are described by dipole polarizability tensors located at the centroids 

of localized orbitals: bonds and lone-pairs. The repulsive terms (exchange repulsion + 

charge transfer) are represented by exponential functions placed at the atom centers and 

the center of mass, with the exponents fitted to the water dimer potential energy surface. 

There are two QM-EFP1 variants; Hartree-Fock (HF)-based (EFP1/HF)41,42 and density 

functional theory (DFT)-based (EFP1/DFT).43 The B3LYP82,83 functional was used for 

the DFT version. Recently, Yoo et al.44 interfaced time dependent density functional 

theory (TDDFT) with the EFP1/DFT model to describe the excited states of molecules 
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solvated by water. This combined TDDFT/EFP1/DFT method was used to calculate the 

solvent-induced shifts of molecular electronic excitations of acetone. The calculated 

solvent effect on the n"$* vertical excitation energy is in good agreement with the 

experimental blue-shift. 

 

All calculations in the present work are performed with the GAMESS84,85 

electronic structure code. First, the solute with one, two, and three water molecules 

located at the ground state global minima are fully optimized with second order 

perturbation theory (MP2)86 and the 6-311++G(2d,2p) basis set, in C1 symmetry. 

 

Using the optimized geometries, vertical excitation energy calculations are carried 

out with CIS,87 equations of motion coupled-cluster with singles and doubles (EOM-

CCSD),88 completely renormalized coupled cluster theory with single and double and 

perturbative triple excitations (CR-EOMCCSD(T)),89 and TDDFT90,91 with the PBE0 

functional and using the cc-pVDZ92,93 basis set. Only vertical singlet-to-singlet transitions 

are considered here.  

 

The hybrid QM/EFP scheme is employed to calculate the solvent induced shifts of 

the amides.44 The solute is treated quantum mechanically using DFT and the PBE0 

functional with the cc-pVDZ basis set. The solvent is treated using EFP1/DFT 100 

solvent water molecules. Therefore, MD simulations with 100 waters explicitly modeled 

with the EFP method in GAMESS can be described as a QM/MM (PBE0/EFP1) variant.  



www.manaraa.com

 83 

The MD simulations were carried out for both the gas phase and the aqueous phase (100 

EFP1 water molecules) at 300 K, with a time step of 1 fs.  The simulation was carried out 

for 60 ps with 50 ps equilibration, and configurations were extracted every 10 steps after 

equilibration was achieved. Therefore, a total of 1000 configurations were used to 

compute the TDDFT(PBE0)/cc-pVDZ vertical excitation energies.  

 

The simplest ab initio electronic structure implementation for calculating vertical 

excitation energies is CIS. TDDFT has become a popular method for calculating 

electronic excitation spectra because it is able to produce accurate vertical absorption 

energies for some types of molecular systems, at a relatively modest computational 

cost.94-97 Of the methods used in this work, CR-EOM-CCSD(T) is expected to provide 

the most accurate excitation energies and also to be the most computationally expensive. 

  

III. Results and Discussion 

 

The MP2/6-311++G(2d,2p) optimized structures of the HCONH2:n(H2O) and 

NMA:n(H2O) complexes (n=0~3) are shown in Figures 1 and 2, respectively. In general, 

the water molecules are more likely to form hydrogen bonds to the carbonyl oxygen than 

to the amide group.  

 

The calculated vertical n!!* ("1) and !nb!!* ("2) excitation energies of the 

amides and amide:water complexes are shown in Tables I and II, respectively. The blue 
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(or red) -shifted energy values are given in parentheses. In general, n!!* excitations are 

blue-shifted and !nb!!* excitations are red-shifted at all levels of theory. One exception 

is the TDDFT !nb!!* transition in HCONH2:2H2Oa. However, the predicted solvent-

induced shifts for these species are small at all levels of theory. EOM-CCSD and CR-

EOMCCSD(T) give essentially the same vertical excitation energies.  

 

The MD simulated spectra of HCONH2 and NMA are shown in Figures 3a and 

3b, respectively. The "1(n"!*) spectra are shown in solid bars and "2(!nb"!*) spectra 

are shown in open bars. In each spectrum, the green color represents the amide with 100 

EFP1 waters and the orange color represents the amide without EFP1 waters. The 

average excitation energy of the "1(n"!*) transition is blue-shifted and the average 

"2(!nb"!*) transition is red-shifted in both HCONH2:100EFP1 and NMA:100EFP1, 

relative to the HCONH2 and NMA without EFP1 waters present.   

 

Each geometric configuration (snapshot) in an MD trajectory shows different 

electronic properties. Hence, the "1(n"!*) and "2(!nb"!*) vertical excitation energies 

are different for one geometric configuration to another. Therefore, it is important to 

average the excitation energies. The computed average vertical excitation energy values 

and shifts are given in Table III. The computed shifts are in reasonable agreement with 

the experimental data.4, 5 
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The physical origin of the solvatochromic shifts of "1(n"!*) and "2(!nb"!*) 

can be correlated with molecular orbital characteristics if the CIS wavefunction is in 

reasonable agreement with the more reliable levels of theory (e.g., the EOM-CC 

methods), and if the CI wavefunction is dominated by just one orbital excitation, such as 

n"!* and !nb"!*. It may be seen in Tables 1 and 2 that although the absolute CIS 

excitation energies are too high relative to the more accurate methods, they are 

consistently so. Consequently, the CIS method is in consistently good agreement with the 

shifts that are predicted by the EOM-CC methods. In addition, the CIS expansion 

coefficient for the n"!* and !nb"!* excitations are greater than |0.9| in most of the 

complexes and always greater than |0.8|, so, a qualitative orbital-based argument is 

reasonable here.  

 

The !nb, n, and !* Hartee-Fock orbitals of HCONH2 and NMA molcules are 

shown in Fig. 4(a) and 4(b), respectively. Schematic representations of the molecular 

orbitals and vertical excitation of amides are provided in Fig. 5. According to Figures 

4(a), 4(b) and 5, the electron densities of both the lone pair orbital n and the anti-bonding 

!* orbital are distributed mainly on the carbonyl group of the amide.  Most of the 

electron density in the n orbital is located on the oxygen, while in the !* orbital most of 

the electron density is located on the carbonyl carbon. The nonbonding orbital !nb has a 

nodal plane on the carbonyl carbon atom. Therefore, the electronic density of the !nb 

orbital is primarily on the nitrogen atom and on the oxygen atom.  
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As illustrated in Figure 6, the schematic energy level diagrams44 are designed for 

the solvent effects on the vertical excitations using two possible interactions (Interaction 

type I and Interaction type II), of water with amides. Figure 7 shows the configuration 

(snapshot) of HCONH2 in EFP1 water during a MD simulation. This shows how the 

EFP1 water molecules spherically surround the solute molecule. One can determine the 

optimum number of EFP1 waters that are required for solvation by successively adding 

EFP1 water molecules and calculating the properties. The solutes HCONH2 and NMA 

(not shown) are relatively small, so 100 EFP1 water molecules are sufficient for complete 

solvation. The structural pattern of water molecules surrounding the solutes shown in 

Figure 7 is close to that of the solute:n(H2O) in gas phase shown in Figures 1 and 2. 

 

 

Interaction type I: In Fig. 6 (a), one of the hydrogen atoms in a water molecule 

involves a hydrogen bond interaction with the amide carbonyl oxygen. In this interaction 

type, the water oxygen atom donates the hydrogen to the carbonyl oxygen acting as the 

hydrogen acceptor. Both the occupied (n and !nb) and virtual (!*) amide orbitals are 

stabilized due to the favorable electronic interaction between the partially positive water 

hydrogen atom and the electronic density on the carbonyl group. However, one can 

deduce that the amide n orbital would be more stabilized than the !* orbital since the n 

orbital has more electron density localized on the carbonyl oxygen than does the !* 

orbital. Therefore, the n-!* energy gap increases in the presence of the water, relative to 

the isolated amide molecule. This interaction results in a blue-shifted n!!* vertical 
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excitation. However, the amide occupied !nb orbital will be slightly less stabilized than 

that of the !*orbital because the !nb electron density is distributed between the nitrogen 

and oxygen atoms. Therefore, the !nb-!* energy gap slightly decreases n the presence of 

a water molecule, relative to the isolated amide molecule, giving rise to a red shift upon 

solvation.   

 

Interaction type II: In Fig. 6 (b), a water oxygen atom forms a hydrogen bond 

interaction with an amide (N-H) hydrogen atom. In this interaction type, the water 

oxygen atom is the hydrogen atom acceptor and the N-H amide group is the hydrogen 

donor. Since the electron densities on the occupied orbitals (n and !nb) and the virtual !* 

orbital cause a destabilizing electronic interaction between the partially negative water 

oxygen atom and the partially negative amide nitrogen atom, each of the !nb, n, and the 

!* orbital energies increase in the presence of a water molecule, relative to an isolated 

amide. One can deduce that the !nb orbital will be destabilized more than the !* due to 

the larger electron density of the !nb localized on the amide nitrogen atom than that of !* 

orbital. Therefore, the !nb-!* energy gap decreases with a water present, relative to the 

isolated amide molecule. This gives rise to a red-shifted !nb !!* vertical excitation.  

 

In summary, the blue (or red)-shift vertical excitations are mainly due to the 

different electron density distributions between the n (or !nb) and the !* orbitals of 

amides interact with different solvent configurations via hydrogen bonding.  
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IV. Conclusions 

 

Four different levels of theory CIS, EOM-CCSD, CR-EOMCCSD(T), and 

TDDFT (PBE0 functional) with cc-pVDZ basis set are used to study the explicit solvent 

effect on the electronic spectra for the of HCONH2:n(H2O) and NMA:n(H2O) complexes 

(n = 1-3). These computational results provide the qualitative interpretation of the solvent 

effects on the electronic absorption spectra of amides. In addition, the simulated 

electronic spectra are calculated through the QM/EFP1 MD simulation combined with 

TDDFT/EFP1. The calculated water solvent effect on the n!!* and !nb!!* vertical 

excitations exhibits quantitative blue- and red- shifts in the amides, which are consistent 

with the experimental observation.  

 

The schematic energy level diagrams (Fig. 6) are used to understand the solvent 

induced blue- and red -shift vertical excitation of the amides. In summary, the physical 

origin of the solvent effect on n!!* (blue-shift) and !nb!!* (red-shift) vertical 

excitations of amides could be understood as how the energies of occupied molecular 

orbitals are changed relative to that of the !* due to stabilizing (or destabilizing) 

electronic interaction of water with the electronic densities of the amides.  
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Table I. The !1(n!"*) vertical excitation energies (eV) for HCONH2:n(H2O) and NMA:n(H2O), n=0~3 with the cc-pVDZ 

basis set using the MP2/6-311++G(2d,2p) geometry. The vertical excitation energy differences between the amide and 

amide:water complex are provided in parentheses; a and b refer to different isomers of the complexes (See Figures 1 and 2). 

aNMA in cyclohexane (The experimental data for NMA are not available for the n-"* state). 

 CIS EOM-CCSD CR-

EOMCCSD(T)       

ffCRlEOMCCSD(

T)EOMCCSD(T)

EOMCCSD(T) 

TD-PBE0 Exp 

HCONH2 6.48(0.00) 5.78(0.00) 5.41(0.00) 5.65(0.00) 5.585 
HCONH2:1H2Oa 6.84(0.36) 6.04(0.26) 5.65(0.24) 5.89(0.24)  
HCONH2:1H2Ob 6.57(0.10) 5.84(0.07) 5.47(0.06) 5.71(0.06)  
HCONH2:2H2Oa 7.12(0.65) 6.26(0.48) 5.85(0.44) 6.06(0.41)  
HCONH2:2H2Ob 6.97(0.50) 6.13(0.35) 5.73(0.32) 5.96(0.31)  
HCONH2:3H2Oa 7.25(0.78) 6.35(0.57) 5.94(0.53) 6.13(0.48)  
HCONH2:3H2Ob 7.22(0.75) 6.33(0.56) 5.92(0.51) 6.12(0.47)  
NMA 6.77(0.00) 5.90(0.00) 5.48(0.00) 5.71(0.00) a5.4615 

NMA:1H2Oa 7.08(0.31) 6.14(0.24) 5.70(0.22) 5.94(0.22)  
NMA:1H2Ob 6.81(0.05) 5.92(0.02) 5.50(0.02) 5.72(0.01)  
NMA:2H2Oa 7.33(0.56) 6.30(0.40) 5.84(0.36) 6.07(0.36)  
NMA:2H2Ob 7.14(0.38) 6.18(0.28) 5.73(0.26) 5.96(0.25)  
NMA:3H2Oa 7.45(0.68) 6.35(0.45) 5.87(0.40) 6.10(0.38)  
NMA:3H2Ob 7.41(0.64) 6.35(0.46) 5.89(0.41) 6.11(0.40)  
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Table II. The !2("nb!"*) vertical excitation energies (eV) for HCONH2:n(H2O) and NMA:n(H2O), n=0~3 with the cc-pVDZ 

basis set using the MP2/6-311++G(2d,2p) geometry. The vertical excitation energy differences between the amide and 

amide:water complex are provided in parentheses; a and b refer to different isomers of the complexes (See Figures 1 and 2). 

 

 CIS EOM-CCSD CR-EOMCCSD(T) TD-PBE0 Exp 

HCONH2 9.21(0.00) 8.13(0.00) 7.79(0.00) 8.64(0.00) 7.315 
HCONH2:1H2O

a 

9.08(-0.13) 7.90(-0.23) 7.42(-0.37) 8.61(-0.03)  
HCONH2:1H2O

b 

9.12(-0.09) 7.96(-0.17) 7.47(-0.32) 8.39(-0.25)  
HCONH2:2H2O

a 

9.12(-0.08) 7.93(-0.20) 7.46(-0.33) 8.75(0.11)  
HCONH2:2H2O

b 

9.07(-0.13) 7.88(-0.25) 7.41(-0.38) 8.61(-0.03)  
HCONH2:3H2O

a 

9.11(-0.09) 7.90(-0.23) 7.44(-0.35) 7.95(-0.69)  
HCONH2:3H2O

b 

9.07(-0.13) 7.90(-0.23) 7.44(-0.35) 8.10(-0.54)  
NMA 8.94(0.00) 7.68(0.00) 7.17(0.00) 7.57(0.00) 6.813 
NMA:1H2Oa 8.96(0.03) 7.70(0.01) 7.23(0.05) 7.72(0.15)  
NMA:1H2Ob 8.87(-0.07) 7.64(-0.04) 7.15(-0.02) 7.47(-0.10)  
NMA:2H2Oa 8.89(-0.04) 7.58(-0.10) 7.08(-0.09) 7.54(-0.03)  
NMA:2H2Ob 8.88(-0.05) 7.63(-0.05) 7.14(-0.03) 7.56(-0.01)  
NMA:3H2Oa 8.84(-0.10) 7.50(-0.19) 6.99(-0.18) 7.54(-0.03)  
NMA:3H2Ob 8.83(-0.11) 7.54(-0.14) 7.05(-0.13) 7.56(-0.01)  
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Table III. The average vertical excitation energies of !1 and !2 are given in eV for 

HCONH2 and NMA at the TD-PBE0/cc-pVDZ level of theory. 

 !1(n!"*) !2("nb!"*) 

HCONH2 5.75 8.74 

HCONH2:100EFP1 6.08 8.31 

QM/EFP1 shift 0.33               ! 0.43 

Experimental shift  0.27a               ! 0.50b 

NMA 5.74 7.52 

NMA:100EFP1 6.15 7.51 

QM/EFP1 shift 0.42               ! 0.01 

Experimental shift  0.39c               ! 0.07d  

aObtained using the n!"* absorption spectra of HCONH2 in gas phase (5.58 eV)5 and 

HCONH2 in aqueous solution (5.85 eV).4  
bObtained using the "nb!"* absorption spectra of HCONH2 in gas phase (7.31 eV)5 and 

HCONH2 in acetonitrile solution (6.81 eV).5 
cObtained using the n!"* absorption spectra of NMA in cyclohexane (5.46 eV)15 and 

NMA in aqueous solution (5.85 eV).4 
dObtained using the "nb!"* absorption spectra of NMA in cyclohexane (6.74 eV)4 and 

NMA in aqueous solution (6.67 eV).4 
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HCONH2  

 

  
HCONH2:1H2Oa  

0.00  
HCONH2:1H2Ob  

4.30 

  
HCONH2:2H2Oa  

4.46 
HCONH2:2H2Ob  

0.00 

  
HCONH2:3H2Oa  

0.00 
HCONH2:3H2Ob  

4.94 
 

Figure 1. MP2/6-311++G(2d,2p) optimized structures of HCONH2:n(H2O) complexes 

(n=0~3); a and b refer to different isomers of the complexes. The relative energies of 

isomers in each HCONH2:n(H2O) complexes are given in kcal/mol. 
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NMA  

 

  
NMA:1H2Oa  

2.58 
NMA:1H2Ob  

0.00 

  
NMA:2H2Oa  

0.00 
NMA:2H2Ob  

1.26 

  
NMA:3H2Oa  

0.00 
NMA:3H2Ob  

0.60 
 
Figure 2. MP2/6-311++G(2d,2p) optimized structures of NMA:n(H2O) complexes 

(n=0~3); a and b refer to different isomers of the complexes.  The relative energies of 

isomers in each HCONH2:n(H2O) complexes are given in kcal/mol. 
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(a) HCONH2 
 

Figure 3. The simulated spectrum for the !1(n!"*) (shaded bars) and !2("nb!"*) 

(unshaded bars) vertical excitation energies (!) of  (a) HCONH2 and (b) NMA. The 

green bars represent the amide with 100EFP1 and the orange bars represent the amide 

without EFP1.  
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(b) NMA 

 

Figure 3. (continued) 
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Figure 4. The "nb, n, and "* Hartree-Fock orbitals of HCONH2 (a) and NMA (b). The 

color labeling scheme is: C=black, H=gray, N=blue and O=red. The positive lobes of 

each molecular orbital are yellow and the negative lobes are green. 
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(b) 
 

Figure 4. (continued) 

 
 

 

 
Figure 5. Schematic plots "nb, n, and "* orbitals, for HCONH2 (R=H) or NMA 

(R=methyl). Relative vertical excitation energies are indicated with vertical arrows. 
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                         in vacuum                in water 

(a) 

 
                         in vacuum                in water 

 

(b) 
Figure 6. Schematic energy level diagrams for the vertical excitations in vacuum and 

solvated systems, indicated with arrows. The dashed lines indicate the situation in which 

the occupied molecular orbitals (n and "nb) have the same electron distribution as the 

virtual molecular orbital ("*). The blue and red arrows are used for blue and red -shifts, 

respectively. Two hydrogen bonding interactions are considered: (a) Interaction type I: 



www.manaraa.com

 109 

hydrogen bond between water and the carbonyl group and (b) Interaction type II: 

hydrogen bond between water and the N-H group.  

 

 
 

Figure 7. Snapshot of HCONH2 in 100 EFP1 waters during the MD simulation. The 

hydrogen, carbon, nitrogen and oxygen atoms are colored white, gray, blue and red, 

respectively. 

 

 

 
 



www.manaraa.com

 110 

CHAPTER 5. EXCITED STATE HYDROGEN ATOM TRANSFER 

REACTION IN SOLVATED 7-HYDROXY-4-METHYLCOUMARIN  

 

A paper published in The Journal of Physical Chemistry B 

Nuwan De Silva, Noriyuki Minezawa, and Mark S. Gordon 

 

Abstract 

 

Excited state enol to keto tautomerization of 7-hydroxy-4-methyl-coumarin 

(C456) with three water molecules (C456:3H2O), is theoretically investigated using time-

dependent density functional theory (TDDFT) combined with the polarizable continuum 

model and 200 waters explicitly modeled with the effective fragment potential. The 

tautomerization of C456 in the presence of three water molecules is accompanied by an 

asynchronous quadruple hydrogen atom transfer reaction from the enol to the keto 

tautomer in the excited state. TDDFT with the PBE0 functional and the DH(d,p) basis set 

is used to calculate the excited state reaction barrier height, absorption (excitation) and 

fluorescence (de-excitation) energies. These results are compared with the available 

experimental data and theoretical data. In contrast to previous work, it is predicted here 

that the coumarin 456 system undergoes a hydrogen atom transfer, not a proton transfer. 

The calculated reaction barrier of the first excited-state of C456:3H2O with 200 water 

molecules is found to be ! 0.23 kcal/mol without zero point energy (! 5.07 kcal/mol with 

zero point energy i.e. the activation energy).   
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I. Introduction 

 

The hydrogen atom transfer/proton transfer (HT/PT) reaction is one of the most 

fundamental reactions occurring in chemistry and biology.1-6 For example, the excited-

state HT/PT relay along the hydrogen-bonded network is a vital reaction in revealing the 

photoreactivity in green fluorescent protein,7,8 which is widely used for fluorescence 

markers in living cells to illuminate a function of a specific gene. The multiple proton 

relay also plays a critical role in a proton pump across a cell membrane through the 

proton wire, where the proton transport is achieved against a pH gradient in and out of 

the membrane. The mechanism of proton transport is also a significant aspect in 

developing novel polymer electrolyte fuel cells and direct methanol fuel cells, where the 

multiple proton relay in the water networks may proceed via the Grotthuss mechanism.9 

A full understanding of the mechanisms and dynamics of HT/PT reactions is, therefore, 

of great importance.  

 

HT/PT reactions can occur either as an intramolecular reaction in which the donor 

and acceptor groups exist within the same molecule or as an intermolecular reaction in 

which the donor and acceptor groups are in two different molecules. However, the 

intramolecular HT/PT reaction cannot spontaneously occur in some molecules because 

the proton acceptor is not close enough to the proton donor. In such a case, solvent 

molecules may assist the HT/PT reaction (pseudo-intermolecular reaction) via hydrogen 

bond formation between the donor and the acceptor and conducting the donor hydrogen 
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atom or proton to the acceptor. Therefore, in the presence of solvent assistance, the 

formation of hydrogen bonds along the reaction coordinate can induce a relay of multiple 

protons or hydrogen atoms from the reactants to the products. However, it is difficult to 

experimentally determine the characteristic features in a multiple-HT/PT mainly because 

of thermal fluctuations in the reaction center in the condensed phase. 

 

Often HT/PT reactions are encountered in the excited state. Research on excited 

state HT and PT (ESHT and ESPT) reactions at the molecular level can be complex due 

to the structural complexity, very short time scales, and solvent fluctuations involved in 

the process. Upon electronic excitation, the geometry and acid-base characteristics of a 

molecule are significantly modulated if ESHT/ESPT occurs. Because the HT/PT process 

involves motion of the hydrogen atom or proton, the HT/PT transfer process is very 

sensitive to the degree of hydrogen bonding and also to the dielectric properties of the 

solvent. Therefore, HT/PT reactions in aqueous solution may involve different reaction 

pathways and dynamics, depending on the reactants, number of water molecules, and 

their relative orientations.  

 

Excited-state double HT/PT was discovered by Kasha and co-workers10 for  7-

azaindole (7AI) in alcohol complexes and in a doubly hydrogen-bonded 7AI dimer 

formed in high concentrations in nonpolar solvents. Since then, the photophysics of 

bifunctional heteroaromatic compounds has received a great deal of attention. 

Supersonically jet-cooled hydrogen-bonded clusters in the gas phase are good model 
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systems to reveal the dynamics of multiple-HT/PT, where the lowering of the 

temperature significantly suppresses the thermal fluctuations and the cluster size can be 

controlled.11 Theoretically, simple model compounds of certain molecules with 

appropriate protic solvents have been studied to understand the HT/PT process. 

Kyrychenko, et al.12 have studied the HT/PT reaction of 1H-pyrrolo[3,2-h]quinolone 

(PQ) with one and two water molecules in the lowest excited singlet states at the 

TDB3LYP/cc-pVDZ level in the gas phase. They have calculated the excited state PT 

reaction barrier to be 20.9, 3.0, and 5.6 kcal/mol, respectively, for PQ, PQ:1H2O, and 

PQ:2H2O. Leutwyler and co-workers13 performed CIS/6-31G(d,p) calculations to 

investigate the possible competition between HT and PT in 7-hydroxy-quinoline (7HQ) 

with three NH3 molecules. They found that barrier for the PT reaction path is 20-25 

kcal/mol higher than that for the HT path. Fernandez-Ramos, et al.14 performed complete 

active space self-consistent field (CASSCF) and multiconfiguration second-order 

perturbation theory (CASPT2) calculations with the 6-31G(d,p) basis set to investigate 

the enol to keto tautomerization in the lowest singlet excited state of 7HQ with three NH3 

molecules with Cs symmetry in the gas phase. The CASPT2//CASSCF energy barrier for 

the HT process is ~5 kcal/mol, while the predicted PT pathway has a much larger energy 

barrier of ~20 kcal/mol.  

 

An early theoretical study on the ESHT reaction of 7AI:1H2O was performed by 

Chaban and Gordon,15,16 in which the CASSCF/DZP method was used for the isolated 

7AI molecule and the 7AI:1H2O complex in the ground and first excited states. 7AI was 
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predicted to be more stable than the tautomer in the ground state, whereas the relative 

energies are reversed in the excited state, and the activation energies for tautomerization 

in both states of 7AI are significantly reduced by the complexation with water. 

 

Most coumarin (1,2-benzopyrone) derivatives have relatively high fluorescence 

quantum yields.17-22 Consequently, they are widely used as fluorescent indicators, laser 

dye colorants, nonlinear optical chromophores, and excellent probes to study the 

solvation dynamics.23-29 Among the coumarin dyes, hydroxycoumarin dyes have received 

the most attention because of their interesting anomalous pH-dependent fluorescence 

spectra.30-34 For example depending on the acidity of the solvent 7-hydroxy-4-methyl-

coumarin (4-methylumbelliferone), also commercially known as coumarin 456 (C456), 

exhibits a variety of fluorescence spectra that have been suggested as the basis for the 

construction of acidity-tunable blue-green lasers.31,32,34 Henceforth, coumarin 456 will be 

referred to as C456. C456 is a fluorescent indicator that is colorless at pH 7.0 and exhibits 

a blue fluorescence at pH 7.5. 

 

Electronic excitation to the S1 state strongly modifies the acid-base properties of 

C456, rendering the hydroxyl group more acidic (S0 (pKa=7.26), S1 (pKa~0.45)).35 C456 

is a fluorescence indicator and a laser dye whose emission range is exceptionally broad 

(360-590 nm). In the excited state, C456 exhibits four possible fluorescent species, 

depending on the solvent and the pH: enol (E*, 380 nm), anionic (A*, 450 nm), cationic 

(C*, 412 nm), and keto-tautomeric (K*, 480 nm). In the ground state, on the other hand, 
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the absorption spectra indicate only three species, enol (E), anion (A), and cation (C).36-38 

Therefore, the K* form appears to be an excited-state reaction product, which arises from 

the E* form through HT/PT from the donor (acidic O!H) to the acceptor (basic C=O) 

group in the excited state. Direct intramolecular HT/PT in C456 would be difficult 

because the donor and acceptor components are too far away from each other. Therefore, 

C456 requires a solvent wire to bridge the donor and acceptor groups. Two different 

mechanisms of photo-excited tautomerization processes have been discussed in the 

literature,33,36,37,39 a dissociative two-step pathway33,39 via the A* or C* species (reaction 

intermediates) and a nondissociative36,37 one-step reaction in water. The latter is 

considered to be the most probable mechanism. 

 

C456 has been investigated theoretically40 using the TDB3LYP method and the 

resolution-of-the-identity coupled-cluster singles-and-doubles (RI-CC2) method with the 

SVP, SVPD, TZVP, and TZVPD basis sets. The excitation and de-excitation energies of 

the lowest singlet states for the enol and keto forms were studied in the gas phase and in 

solution using the polarizable continuum model (PCM)41,42 for water. The calculations 

revealed that in PCM water the "-"* state is the lowest lying excited state. Georgieva, et 

al. extended the investigation by studying the PT reaction in C456 along a H-bonded 

water wire of three water molecules using TDDFT, RI-CC2, and singly excited 

configuration interaction (CIS) calculations.43 The calculations suggest the possibility of 

HT/PT from the enol to the keto form in the excited state. All of the methods used predict 

that the reaction path occurs in the "-"* state, and no crossing with a Rydberg-type "#* 
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state was found. The calculations predict that the S1 enol- and keto-clusters are separated 

by a barrier height of 17-20 kcal/mol, although an actual transition state structure was not 

determined.  

 

In this paper, the excited-state quadruple HT/PT reaction of C456 with three 

quantum water molecules (C456:3H2O) has been studied. Solvent effects are analyzed by 

incorporating both the PCM model and the effective fragment potential (EFP) for 

water.44-46 

 

II. Computational Details 

 

The geometries of the enol and keto tautomers of C456 in the ground state (E and 

K) and the "-"* first excited state (E* and K*) were optimized using PBE0 and 

TDPBE0,47-49 respectively, with the DH(d,p)46 basis set, with no symmetry constrains (C1 

symmetry). The enol tautomer, transition state, and keto tautomer of C456:3H2O  as well 

as C456:3H2O with small clusters of EFP water molecules (C456:3H2O+nEFP n=1!4)  in 

the ground state (E, TS, and K) and the "-"* first excited state (E*, TS*, and K*) were 

also optimized using the same levels of theory. The geometry optimizations converged 

the gradient to less than 0.0001 Hartree/Bohr. The Hessian (matrix of energy second 

derivatives) was calculated and diagonalized at the optimized geometries. All E, K, E*, 

and K* stationary points of C456, C456:3H2O, and C456:3H2O+nEFP were 

characterized as true minima by confirming that the all corresponding eigenvalues of the 
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Hessian are positive. The TS and TS* stationary points were characterized as true saddle 

points by confirming that there is just one negative Hessian eigenvalue.  

 

The reaction paths in the ground state (S0) and the first "-"* excited state (S1) for 

C456:3H2O and C456:3H2O+nEFP were determined by calculating the intrinsic reaction 

coordinates (IRC),50-55 starting from the corresponding transition states. The IRC is the 

steepest descent path in mass-weighted coordinates and is calculated by propagating the 

system from the transition state backward and forward towards the reactants (enol 

tautomer) and products (keto tautomer), respectively.  

 

An additional interpretive tool is provided by the electrostatic potential (ESP)- 

derived56,57 TDPBE0/DH(d,p) atomic charges along the excited state IRC path (30 

equally spaced points) to determine whether the S1 reaction is primarily HT or PT in the 

C456:3H2O system. 

 

The C456 and C456:3H2O systems in the presence of PCM water are denoted 

C456:PCM and C456:3H2O+PCM, respectively, throughout the remainder of the paper. 

The stationary points of C456:PCM (E, E*, K, and K*) and C456:3H2O+PCM (E, E*, 

TS, TS*, K, and K*) were fully optimized and characterized in both S0 and S1. The S0 and 

S1 IRC paths of C456:3H2O+PCM were also generated. 
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The Monte Carlo (MC)58,59 with simulated annealing (SA)60 method was used to 

sample the potential energy surface of C456:3H2O with 200 EFP water molecules 

(C456:3H2O+200EFP) in S0 the and the S1 using PBE0/DH(d,p) and TD-PBE0/DH(d,p), 

respectively. The gas phase optimized geometries of C456:3H2O and C456:3H2O+nEFP 

were used as the starting geometries of the MC/SA simulations with 200 EFP water 

molecules. The MC/SA method with local minimization was used to sample the 

configuration space. For each global minimum found, the number of structures sampled 

was on the order of 100000 – 350000. The number of steps taken for each temperature 

varied from 10 to 1000. The number of steps between local optimizations varied from 10 

to 100. The number of fragments moved per step varied from 1 to 20. The starting 

temperature for the simulated annealing varied from 20000 K to 1000 K and the final 

temperature varied from 100 K to 300 K. 

 

To obtain the tautomerization activation energy, zero point energy (ZPE) 

corrections have been obtained using the harmonic frequencies. The S0 tautomerization 

barrier height, without ZPE corrections, is Eb(E!K) = ETS (S0) – EE (S0) where the subscript 

E refers to the enol tautomer. The barrier height with ZPE corrections yields the 0K 

activation energy, Ea(E!K) . The barrier height and activation energy in the S1 excited state 

are obtained in an analogous manner. These two quantities are denoted as Eb(E*!K*)  and 

Ea(E*!K*) , respectively.  
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Using the optimized geometries, vertical and adiabatic excitation energies 

(absorption) and vertical de-excitation energies (fluorescence) were carried with 

TDPBE0/DH(d,p). Only singlet-to-singlet transitions are considered here. The vertical 

excitation energy corresponds to the electronic excitation from the ground state minimum 

(S0) to the first electronic excited S1 state (!!*), with no geometry relaxation. The 

adiabatic excitation energy is the energy difference between the minimum on the S1 

surface and the minimum on the S0 surface. The vertical de-excitation energy corresponds 

to the energy difference between the S0 and S1 states at the S1 minimum energy geometry. 

The ZPE energy corrections to the adiabatic excitation energies were obtained using the 

zero point energies of the corresponding minima. 

 

All calculations were performed with the general atomic and molecular electronic 

structure system (GAMESS).61,62 The structures were visualized with MacMolPlot,63 a 

graphical interface to GAMESS. 

 

III. Results and Discussion 

 

The atom labeling of the C456 and C456:3H2O are illustrated in Figure 1. The 

C456 optimized geometries of the stationary points of S0 (E and K) and S1 (E* and K*), 

respectively, optimized with PBE0/DH(d,p) and TDPBE0/DH(d,p), respectively, are 

shown in Figure 2. Except for the position of the enol (O20!H21) and keto (C2!H11) 

functional groups, the main structural difference between the two tautomers is the ring 
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non planarity of the S1 state: the E* tautomer is non planar (O1 oxygen atom located out 

of the fused ring plane) relative to the E, K, and K* tautomers. The zero point energy 

(ZPE) corrected relative 0K enthalpies (Hrel
0 ) and relative energies without the ZPE 

correction (Erel ) of the C456 tautomers are given in Table I. According to Table 1, Hrel
0

of the enol tautomer of C456 is more stable than that of keto in S0 by 1.09 eV (25.14 

kcal/mol). In contrast Hrel
0 of the keto tautomer of C456 is more stable in the excited state 

by 0.23 eV (5.30 kcal/mol). Therefore, the enol to keto tautomerization of C456 is highly 

endothermic in S0 and exothermic in S1. The favorable thermodynamics in S1 is one of the 

reasons that the enol to keto tautomerization reaction occurs most likely in the S1 state. 

The relative stability of enol in S0 and keto in S1 holds for the other C456 complexes in 

Table 1. The keto-enol energy difference in S1 is generally rather small, ranging from 

0.23 eV when no water is present to 0.03 and 0.05 eV for C456:PCM and 

C456:3H2O+PCM, respectively. The most important factor for a probable S1 

tautomerization is the lower activation energy compared to the S0 activation energy 

(Table II). The location of a transition state was unsuccessful for the isolated C456 

system due to the long distance between H21 and O11 (~ 7 Å) in the enol structure and 

similarly in the keto structure (see Figure 1). 

 

In order to locate the C456 transition state, three quantum water molecules were 

spatially arranged to bridge the two functional groups via hydrogen bonding. Then, fully 

optimized transition states were obtained in both the S0 and S1 states. C456 requires a 

minimum of three water molecules (C456:3H2O) to find the enol to keto tautomerization 
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transition state. The transition state searches for C456 with one, two, and four water 

molecules were not successful. One and two waters are not sufficient to bridge the two 

functional groups within C456, while four waters makes the bridge too crowded. The 

C456:3H2O optimized  geometries of the S0 (E, TS, and K) and S1 (E*, TS*, and K*) 

stationary points, optimized, respectively, with PBE0/DH(d,p) and TDPBE0/DH(d,p), are 

given in Figure 3. In general, the S1 state C456:3H2O stationary points are somewhat 

more non planar than those of the S0  state. The TS and TS* imaginary frequencies are 

629i and 601i cm!1, respectively. The IRC paths for the S0 and S1 states are shown in 

Figure 4. Each IRC path confirms that the corresponding transition states do connect the 

reactants and products as expected. When going from the reactant to the products, four 

bonds (including three hydrogen bonds) are broken, and four bonds are formed, 

asynchronously along the reaction coordinates.  

 

The ESP-derived charges are shown in Figure 5 according to the atom labeling in 

Figure 1. The ESP-derived charges in the excited state enable one to assess whether 

proton transfer or hydrogen atom transfer occurs during the E* to K* tautomerization. 

According to Figure 5, the ESP-derived atomic charges on the atoms O20, H21, O22, 

H23, O24, H25, O26, H27, and O11 do not change significantly on the C456:3H2O S1 

IRC path. However, the charges on atoms O22, O24, and O26 increase from ~ !1.0e to ~ 

!0.9e in just before the transition state, and then decrease again just after the TS. 

Moreover, the overall charge on H21 decreases, and the overall charge on H27 increases 

by ~0.1e before (enol) and after the reaction (keto). It is interesting to note the charge of 
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the intermediate H23 and H25 transferring atoms in the transition state. The charges on 

these atoms hardly change throughout the reaction path, remaining at ~0.55e. This is very 

close to the partial charge on an H atom in a water molecule, as compared to a proton 

charge of +1. So, the enol-keto excited state process corresponds to a hydrogen atom 

transfer, not a proton transfer.  This is in good agreement with the CIS/SVPD population 

analysis done by Georgieva et al.43 on C456:3H2O, where for the S1 (""*) state charges of 

0.61e for H23 and H25 has been found. The CIS/6-31(+)G(d,p) population analysis done 

by Tanner et al.11,13,64 on 7HQ(NH3)3, predicted for the S1 (""*) state a charge of 0.70e 

for the NH4 moiety. Therefore, the S1 state enol to keto tautomerization reaction of 

C456:3H2O can be interpreted as asynchronized quadruple hydrogen atom transfer 

reaction, even though the transferring H atoms carry substantial partial charges. 

 

The activation energies for the hydrogen atom transfer from the E to the K 

tautomeric form in C456:3H2O, C456:3H2O+PCM, and C456:3H2O+200EFP complexes 

are given in Table II. Table II indicates that the S0 tautomerization of C456:3H2O in the 

gas phase is characterized by a high activation energy (0.87 eV) whereas the S1 state 

reaction proceeds with a low activation energy (0.23 eV). The inclusion of a small cluster 

of water molecules decreases the tautomerization activation energy in the S1 state (Table 

III). Moreover, hydrogen atom transfer in the excited state C456:3H2O+200EFP is 

predicted to proceed through a significantly lower activation energy (-0.22 eV with ZPE 

correction) in the S1 state. A negative activation energy indicates a barrierless process. 

The S0 state activation energy in C456:3H2O+200EFP also decreases two-fold compared 
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to that of the C456:3H2O. The effect of adding PCM on the C456:3H2O S0 and S1 

activation energies is small. 

 

The excited state hydrogen atom transfer activation energies of C456:3H2O+nEFP 

(n=1!4) are given in Table III. In the C456:3H2O+nEFP complexes, the energy barrier is 

dramatically reduced compared to C456:3H2O, so that upon excitation of the 

C456:3H2O+nEFP complex, the tautomerization can occur rapidly. Therefore, the 

hydrogen bond interaction between the EFP molecules and the bridging quantum water 

molecules further decreases the activation energy. For the C456:3H2O+4EFP system, 

following the IRC along the that is referenced in Table III, leads to structures that 

correspond closely to the expected reactants and products (based on direct geometry 

optimizations), with energy differences that are less than 2 kcal/mol in each case. 

Therefore, it is likely that the transition structure for the C456:3H2O+4EFP  that is 

described in Table III is a good approximation to the true TS. 

 

The TDPBE0/DH(d,p) absorption, adiabatic, and fluorescence energies for the 

enol and keto tautomers of the molecular complexes are given in Tables IV and V, 

respectively. In C456, both absorption and fluorescence energies are higher in the enol 

tautomer than the corresponding keto tautomer by 1.26 and 1.31 eV, respectively, in the 

gas phase. In C456:3H2O, both absorption and fluorescence energies are higher in enol 

tautomer than the corresponding keto tautomer by 0.84 and 0.53 eV, respectively, in the 

gas phase. In general, the !!!* vertical excitation, adiabatic, and vertical deexcitation 
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energies of C456 with water molecules (C456:3H2O  and C456:3H2O+200EFP) are red-

shifted in the enol tautomer and blue-shifted in the keto tautomer, relative to isolated 

C456. The global minimum structure of the excited state enol tautomer of 

C456:3H2O+200EFP is given in Figure 6.  

  

IV. Conclusions 

 

The theoretical study of the ground state and excited state tautomerization 

reactions in C456 have been presented, using PBE0/DH(d,p) and TDPBE0/DH(d,p), 

respectively. The transition states of the hydrogen atom transfer reaction were found in 

C456:3H2O and C456:3H2O with PCM as well as in C456:3H2O with small clusters of 

EFP waters. The optimized geometries of the corresponding tautomers are also presented. 

The TDPBE0/DH(d,p) ESP-derived charges along the excited state IRC path predicts that 

the tautomerization reaction is a hydrogen atom transfer reaction, with hydrogen partial 

charges of ~0.55 e. The predicted activation energies are in excellent agreement with the 

experimental evidence. The addition of water molecules to C456 assists the hydrogen 

atom transfer reaction by decreasing the activation energy in the excited state.  

 

The results in the present work have also been compared with the previous 

theoretical data reported by Georgieva, et al. on the C456:3H2O system. They have 

considered the S1 enol to keto tautomerization as a proton transfer reaction; the barrier 

height was estimated to be 17-20 kcal/mol at the TDB3LYP/SVPD level of theory. In the 
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present paper, the S1 enol to keto tautomerization of C456:3H2O was interpreted  as a 

hydrogen atom transfer reaction (not a proton transfer reaction) and the 

TDPBE0/DH(d,p) barrier height was calculated to be 10.15 kcal/mol (5.30 kcal/mol 

activation energy). 

 

Acknowledgements  
 

This work was supported by a National Science Foundation Petascale 

Applications grant. 

 

References 

 

1. Douhal, A.; Kim, S. K.; Zewail, A. H. Femtosecond Molecular Dynamics of 
Tautomerization in Model Base Pairs. Nature 1995, 378, 260-263. 

2. Lu, D. S.; Voth, G. A. Proton Transfer in the Enzyme Carbonic Anhydrase: An Ab 
Initio Study. J. Am. Chem. Soc. 1998, 120, 4006-4014. 

3. Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M. The Nature of the Hydrated 
Excess Proton in Water. Nature 1999, 397, 601-604. 

4. Agarwal, P. K.; Webb, S. P.; Hammes-Schiffer, S. Computational Studies of the 
Mechanism for Proton and Hydride Transfer in Liver Alcohol Dehydrogenase. J. 
Am. Chem. Soc. 2000, 122, 4803-4812. 

5. Geissler, P. L.; Dellago, C.; Chandler, D.; Hutter, J.; Parrinello, M. Autoionization in 
Liquid Water. Science 2001, 291, 2121-2124. 

6. Rini, M.; Magnes, B. Z.; Pines, E.; Nibbering, E. T. J. Real-Time Observation of 
Bimodal Proton Transfer in Acid-Base Pairs in Water. Science 2003, 301, 349-352. 

7. Zimmer, M. Green Fluorescent Protein (GFP): Applications, Structure, and Related 
Photophysical Behavior. Chem. Rev. 2002, 102, 759-781. 



www.manaraa.com

 126 

8. Stoner-Ma, D.; Jaye, A. A.; Matousek, P.; Towrie, M.; Meech, S. R.; Tonge, P. J. 
Observation of Excited-State Proton Transfer in Green Fluorescent Protein Using 
Ultrafast Vibrational Spectroscopy. J. Am. Chem. Soc. 2005, 127, 2864-2865. 

9. Eikerling, M.; Kornyshev, A. A.; Kucernak, A. R. Water in Polymer Electrolyte Fuel 
Cells: Friend or Foe? Phys. Today 2006, 59, 38-44. 

10. Taylor, C. A.; El-bayoum, M. A.; Kasha, M. Excited-State 2-Proton Tautomerism in 
Hydrogen-Bonded N-Heterococlic Base Pairs. Proc. Natl. Acad. Sci. U.S.A. 1969, 
63, 253-260. 

11. Manca, C.; Tanner, C.; Leutwyler, S. Excited State Hydrogen Atom Transfer in 
Ammonia-Wire and Water-Wire Clusters. Int. Rev. Phys. Chem. 2005, 24, 457-488. 

12. Kyrychenko, A.; Waluk, J. Excited-State Proton Transfer Through Water Bridges 
and Structure of Hydrogen-Bonded Complexes in 1H-Pyrrolo 3,2-h Quinoline: 
Adiabatic Time-Dependent Density Functional Theory Study. J. Phys. Chem. A 
2006, 110, 11958-11967. 

13. Tanner, C.; Manca, C.; Leutwyler, S. Probing the Threshold to H Atom Transfer 
Along a Hydrogen-Bonded Ammonia Wire. Science 2003, 302, 1736-1739. 

14. Fernandez-Ramos, A.; Martinez-Nunez, E.; Vazquez, S. A.; Rios, M. A.; Estevez, C. 
M.; Merchan, M.; Serrano-Andres, L. Hydrogen Transfer vs Proton Transfer in 7-
Hydroxy-Quinoline (NH3)3: A CASSCF/CASPT2 Study. J. Phys. Chem. A 2007, 
111, 5907-5912. 

15. Gordon, M. S. Hydrogen Transfer in 7-Azaindole. J. Phys. Chem. 1996, 100, 3974-
3979. 

16. Chaban, G. M.; Gordon, M. S. The Ground and Excited State Hydrogen Transfer 
Potential Energy Surface in 7-Azaindole. J. Phys. Chem. A 1998, 103, 185-189. 

17. Atkins, R. L.; Bliss, D. E. Substituted Coumarins and Azacoumarins - Synthesis and 
Fluorescent Properties. J. Org. Chem. 1978, 43, 1975-1980. 

18. Schimitschek, E. J.; Trias, J. A.; Hammond, P. R.; Henry, R. A.; Atkins, R. L. New 
Laser Dyes with Blue-Green Emission. Opt. Commun. 1976, 16, 313-316. 

19. Reynolds, G. A.; Drexhage, K. H. New Coumarin Dyes with Rigidized Structure for 
Flashlamp-Pumped Dye Lasers. Opt. Commun. 1975, 13, 222-225. 

20. Rechthaler, K.; Kohler, G. Excited-State Properties and Deactivation Pathways of 7-
Aminocoumarins. Chem. Phys. 1994, 189, 99-116. 



www.manaraa.com

 127 

21. Jones, G.; Jackson, W. R.; Choi, C.; Bergmark, W. R. Solvent Effects on Emission 
Yield and Lifetime for Coumarin Laser-Dyes - Requirements for a Rotatory Decay 
Mechanism. J. Phys. Chem. 1985, 89, 294-300. 

22. Jones, G.; Jackson, W. R.; Kanoktanaporn, S.; Halpern, A. M. Solvent Effects on 
Photophysical Parameters for Coumarin Laser-Dyes. Opt. Commun. 1980, 33, 315-
320. 

23. Drexhage, K. H. Dye-Lasers. Springer-Verlag: New York, 1990. 

24. McCarthy, P. K.; Blanchard, G. J. AM1 Study of the Electronic-Structure of 
Coumarins. J. Phys. Chem. 1993, 97, 12205-12209. 

25. Jones, G.; Jimenez, J. A. C. Azole-Linked Coumarin Dyes as Fluorescence Probes of 
Domain-Forming Polymers. J. Photochem. Photobiol. B 2001, 65, 5-12. 

26. Moriya, T. Excited-State Reactions of Coumarins in Aqueous Solutions. III. The 
Fluorescence Quenching of 7-Ethoxycoumarins by the Chloride Ion in Acidic 
Solutions. Bull. Chem. Soc. Jpn. 1986, 59, 961-968. 

27. Kaholek, M.; Hrdlovi$, P. Spectral Properties of Coumarin Derivatives Substituted at 
Position 3. Effect of Polymer Matrix. J. Photochem. Photobiol. A 1997, 108, 283-
288. 

28. Raju, B. B.; Costa, S. M. B. Excited-State Behavior of 7-Diethylaminocoumarin 
Dyes in AOT Reversed Micelles: Size Effects. J. Phys. Chem. B 1999, 103, 4309-
4317. 

29. Moylan, C. R. Molecular Hyperpolarizabilities of Coumarin Dyes. J. Phys. Chem. 
1994, 98, 13513-13516. 

30. Fink, D. W.; Koehler, W. R. pH Effects on Fluorescence of Umbelliferone. Anal. 
Chem. 1970, 42, 990-993. 

31. Shank, C. V.; Dienes, A.; Trozzolo, A. M.; Myer, J. A. Near UV to Yellow Tunable 
Laser Emission from an Organic Dye. Appl. Phys. Lett. 1970, 16, 405-407. 

32. Dienes, A.; Shank, C. V.; Trozzolo, A. M. Evidence for Exciplex Laser Action in 
Coumarin Dyes by Measurements of Stimulated Fluorescence. Appl. Phys. Lett. 
1970, 17, 189-191. 

33. Schulman, S. G.; Rosenberg, L. S. Tautomerization Kinetics of 7-Hydroxy-4-
Methylcoumarin in the Lowest Excited Singlet State. J. Phys. Chem. 1979, 83, 447-
451. 



www.manaraa.com

 128 

34. Trozzolo, A. M.; Dienes, A.; Shank, C. V. Excited-State Reactions of a Laser Dye. 
Evidence for a Two-Step Phototautomerism in 7-Hydroxy-4-Methylcoumarin. J. Am. 
Chem. Soc. 1974, 96, 4699-4700. 

35. Seixas de Melo, J. S.; Becker, R. S.; Macanita, A. L. Photophysical Behavior of 
Coumarins as a Function of Substitution and Solvent: Experimental Evidence for the 
Existence of a Lowest Lying 1(n,.pi.*) State. J. Phys. Chem. 1994, 98, 6054-6058. 

36. Moriya, T. Excited-State Reactions of Coumarins. VII. The Solvent-Dependent 
Fluorescence of 7-Hydroxycoumarins. Bull. Chem. Soc. Jpn. 1988, 61, 1873-1886. 

37. Moriya, T. Excited-State Reactions of Coumarins in Aqueous-Solutions. I. The 
Phototautomerization of 7-Hydroxycoumarin and Its Derivative. Bull. Chem. Soc. 
Jpn. 1983, 56, 6-14. 

38. Kobayashi, T. Picosecond Kinetics of 4-Methylumbelliferone Fluorescence 
Observed with Mode-Locked Laser and Streak Camera. J. Phys. Chem. 1978, 82, 
2277-2281. 

39. Bardez, E.; Boutin, P.; Valeur, B. Photoinduced Biprotonic Transfer in 4-
Methylumbelliferone. Chem. Phys. Lett. 1992, 191, 142-148. 

40. Georgieva, I.; Trendafilova, N.; Aquino, A. J. A.; Lischka, H. Excited State 
Properties of 7-Hydroxy-4-Methylcoumarin in the Gas Phase and in Solution. A 
Theoretical Study. J. Phys. Chem. A 2005, 109, 11860-11869. 

41. Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic Interaction of a Solute with a 
Continuum - A Direct Utilization of Abinitio Molecular Potentials for the Prevision 
of Solvent Effects. Chem. Phys. 1981, 55, 117-129. 

42. Tomasi, J.; Perisco, M. Molecular Interactions in Solution: An Overview of Methods 
Based on Continuous Distributions of the Solvent. Chem. Rev. 1994, 94, 2027-2094. 

43. Georgieva, I.; Trendafilova, N.; Aquino, A. J. A.; Lischka, H. Excited-State Proton 
Transfer in 7-Hydroxy-4-Methylcoumarin Along a Hydrogen-Bonded Water Wire. J. 
Phys. Chem. A 2007, 111, 127-135. 

44. Day, P. N.; Jensen, J. H.; Gordon, M. S.; Webb, S. P.; Stevens, W. J.; Krauss, M.; 
Garmer, D.; Basch, H.; Cohen, D. An Effective Fragment Method for Modeling 
Solvent Effects in Quantum Mechanical Calculations. J. Chem. Phys. 1996, 105, 
1968-1986. 

45. Gordon, M. S.; Freitag, A. M.; Bandyopadhyay, P.; Jensen, J. H.; Kairys, V.; 
Stevens, W. J. The Effective Fragment Potential Method:% A QM-Based MM 



www.manaraa.com

 129 

Approach to Modeling Environmental Effects in Chemistry. J. Phys. Chem. A 2001, 
105, 293-307. 

46. Adamovic, I.; Freitag, M. A.; Gordon, M. S. Density Functional Theory Based 
Effective Fragment Potential Method. J. Chem. Phys. 2003, 118, 6725-6732. 

47. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made 
Simple. Phys. Rev. Lett. 1996, 77, 3865-3868. 

48. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made 
Simple Phys. Rev. Lett. 1997, 78, 1396-1396. 

49. Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without 
Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158-6170. 

50. Ishida, K.; Morokuma, K.; Komornicki, A. The Intrinsic Reaction Coordinate. An 
Ab Initio Calculation for HNC→HCN and H!+CH4→CH4+H!%J. Chem. Phys. 
1977, 66, 2153-2156. 

51. Muller, K. Reaction Paths on Multidimensional Energy Hypersurfaces. Angew. 
Chem. Int. Ed. Engl. 1980, 19, 1-13. 

52. Schmidt, M. W.; Gordon, M. S.; Dupuis, M. The Intrinsic Reaction Coordinate and 
the Rotational Barrier in Silaethylene. J. Am. Chem. Soc. 1985, 107, 2585-2589. 

53. Garrett, B. C.; Redmon, M. J.; Steckler, R.; Truhlar, D. G.; Baldridge, K. K.; Bartol, 
D.; Schmidt, M. W.; Gordon, M. S. Algorithms and Accuracy Requirements for 
Computing Reaction Paths by the Method of Steepest Descent. J. Phys. Chem. 1988, 
92, 1476-1488. 

54. Baldridge, K. K.; Gordon, M. S.; Steckler, R.; Truhlar, D. G. Ab Initio Reaction 
Paths and Direct Dynamics Calculations. J. Phys. Chem. 1989, 93, 5107-5119. 

55. Gonzales, C.; Schlegel, H. B. An Improved Algorithm for Reaction Path Following. 
J. Chem. Phys. 1989, 90, 2154-2161. 

56. Singh, U. C.; Kollman, P. A, An Approach to Computing Electrostatic Charges for 
Molecules. J. Comput. Chem. 1984, 5, 129-145. 

57. Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. A Well-Behaved 
Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic 
Charges - The Resp Model. J. Phys. Chem. 1993, 97, 10269-10280. 

58. Day, P. N.; Pachter, R.; Gordon, M. S.; Merrill, G. N. A Study of Water Clusters 
Using the Effective Fragment Potential and Monte Carlo Simulated Annealing. J. 
Chem. Phys. 2000, 112, 2063-2073. 



www.manaraa.com

 130 

59. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. 
Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 
21, 1087-1092. 

60. Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Optimization by Simulated Annealing. 
Science 1983, 220, 671-680. 

61. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, 
J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. et al. General Atomic and 
Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347-1363. 

62. Gordon, M. S.; Schmidt, M. W. Advances in Electronic Structure Theory: GAMESS 
a Decade Later. Elsevier: Amsterdam, The Netherlands, 2005. 

63. Bode, B. M.; Gordon, M. S. MacMolPlt: A Graphical User Interface for GAMESS. 
J. Mol. Graphics Modell. 1998, 16, 133-138. 

64. Tanner, C.; Manca, C.; Leutwyler, S. Exploring Excited-State Hydrogen Atom 
Transfer Along an Ammonia Wire Cluster: Competitive Reaction Paths and 
Vibrational Mode Selectivity. J. Chem. Phys. 2005, 122, 204326-204336. 

 



www.manaraa.com

 131 

Table I. The 0K relative enthalpies (Hrel
0 ) of the C456 tautomers.  The relative energies 

are given relative to the S0 state of enol tautomer. The values in parenthesis are relative 

energies without zero point energy correction (Erel ). All values are given in eV. 

 S0 S1 
 Enol Keto Keto Enol 

C456 0.00 (0.00) 1.09 (1.11) 3.67 (3.77) 3.90 (4.05) 

C456:3H2O 0.00 (0.00) 0.77 (0.80) 3.58 (3.71) 3.72 (3.85) 

C456:PCM 0.00 (0.00) 0.93 (0.95) 3.68 (3.78) 3.71 (3.81) 

C456:3H2O+PCM 0.00 (0.00) 0.70 (0.71) 3.54 (3.64) 3.59 (3.68) 

C456:3H2O+200EFP 0.00 (0.00) 0.24 (0.27) 3.22 (3.34) 3.47 (3.60) 
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Table II. The S0 and S1 0K activation energies (Ea(E!K)  and Ea(E*!K*) ) of the enol&keto 

tautomerization of the C456 complexes. The energies without ZPE corrections are given 

in parentheses. All values are given in eV. 

 S0 S1 

C456:3H2O 0.87 (1.09) 0.23 (0.44) 

C456:3H2O+PCM 0.70 (0.84) 0.20 (0.29) 

C456:3H2O+200EFP 0.44 (0.66) -0.22 (-0.01) 
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Table III. The excited state activation energy (eV), Ea(E*!K*) , of the enol&keto 

tautomerization reaction of C456:3H2O+nEFP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aThe barrier height, Eb(E*!K*) is given in parenthesis. 

bThe barrier height, Eb(E*!K*)  calculated using the single point energies on the above 

structures with PCM are given in square brackets. 
cThe imaginary frequency (i) of the TS* is given in cm-1.  

n  i  Ea E*!K*( )
 

TS *  

0 629 
0.23 

(0.44) 
[0.38] 

 

1 541 
0.12 

(0.33) 
[0.33] 

 

2 492 
0.11 

(0.32) 
[0.33] 
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Table III. (continued).  

 

 n  i  Ea E*!K*( )
 

TS *  

3 599 
-0.02 
(0.19) 
[0.21] 

 

4 353 
-0.17 
(0.04) 
[0.07] 
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Table IV. The TDPBE0/DH(d,p) vertical excitation (absorption), adiabatic, and vertical 

de-excitation (fluorescence) energies for the C456 enol tautomer. All energies are given 

in eV. The adiabatic energies are given with the ZPE correction. The values in 

parenthesis are the adiabatic energies without the ZPE correction. 

Enol tautomer Vertical Adiabatic Fluorescence Exp 

C456 4.28  3.90 (4.05) 3.58  3.88a 

C456:3H2O 4.04 3.72 (3.85) 3.05  

C456:PCM 4.17 3.71 (3.81) 3.62  

C456:3H2O+PCM 4.03 3.59 (3.68) 3.31  

C456:3H2O+200EFP 4.15 3.47 (3.60) 3.00  

aAbsorption energy of the enol tautomer of C456 in benzene.36 
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Table V. The TDPBE0/DH(d,p) vertical excitation (absorption), adiabatic, and vertical 

de-excitation (fluorescence) energies for keto tautomer of C456. All energies are given in 

eV. The adiabatic energies are given with the ZPE correction. The values in parenthesis 

are the adiabatic energies without the ZPE correction. 

Keto tautomer Vertical Adiabatic Fluorescence Exp 

C456 3.02  2.59 (2.66) 2.27 3.33a 

C456:3H2O 3.20 2.81 (2.90) 2.52  

C456:PCM 3.18 2.75 (2.83) 2.59  

C456:3H2O+PCM 3.24 2.84 (2.93) 2.71  

C456:3H2O+200EFP 3.64 2.98 (3.07) 3.04  

aFluorescence energy of the keto tautomer of C456 in benzene.36 
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(a) C456 

 
Figure 1. The atom labeling of the (a) C456 and (b) C456:3H2O.  
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(b) C456:3H2O 

 
Figure 1. (continued)  

 
 
 
 
 
 



www.manaraa.com

 139 

  
Enol S0 (E) Enol S1 (E*) 

  
Keto S0 (K) Keto S1 (K*) 

 
(a) Perpendicular view  

 
Figure 2. The optimized geometries of the C456 stationary points of S0 (E, TS, and K) 
and S1 (E*, TS*, and K*) optimized, respectively, with PBE0/DH(d,p) and 
TDPBE0/DH(d,p). The molecular geometry is shown in two different views 
(directions) relative to the molecular fused-ring plane: (a) Perpendicular view and (b) 
Parallel view. 
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Enol S0 (E) Enol S1 (E*) 

  
Keto S0 (K) Keto S1 (K*) 

 
(b) Parallel view  

 
Figure 2. (continued) 
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Enol S0 (E) Enol S1 (E*) 

  
TS S0 (TS) TS S1 (TS*) 

  
(a) Perpendicular view  

  
Figure 3. The geometries of the stationary points of S0 (E, TS, and K) and S1 (E*, TS*, 
and K*) of C456:3H2O optimized, respectively, with PBE0/DH(d,p) and 
TDPBE0/DH(d,p). The molecular geometry is shown in two different views 
(directions) relative to the molecular fused-ring plane: (a) Perpendicular view and (b) 
Parallel view. 
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Keto S0 (K) Keto S1 (K*) 

 
(a) Perpendicular view  

 
Figure 3. (continued) 
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Enol S0 (E) Enol S1 (E*) 

  
TS S0 (TS) TS S1 (TS*) 

  
Keto S0 (K) Keto S1 (K*) 

 
(b) Parallel view 

 
Figure 3. (continued) 
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Figure 4. The IRC path in the ground state (red) and the first "-"* excited state (green) 

of C456:3H2O calculated with PBE0/DH(d,p) and TDPBE0/DH(d,p), respectively, 

starting from the corresponding transition states.  
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Figure 5. The ESP-derived TDPBE0/DH(d,p) atomic charges on the O20, H21, O22, 

H23, O24, H25, O26, H27, and O11 atoms along the IRC path of the S1 state of 

C456:3H2O.  

 
 
 
 
 

s sqrt(amu)-Bohr 

ESP-derived atomic charges 
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Figure 6. Global minima of the excited state enol tautomer of C456:3H2O in 200 EFP. 
The hydrogen, carbon and oxygen atoms are colored white, black, and red, 
respectively. 
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CHAPTER 6. QM!EFP1 DISPERSION INTERACTION 

 

A paper to be submitted to The Journal of Physical Chemistry A 

Nuwan De Silva, Luke Roskop, Sarom S. Leang and Mark S. Gordon* 

 

Abstract 

 

An empirical dispersion energy correction for systems that contain the effective 

fragment potential for water molecules (EFP1) and ab initio quantum mechanical (QM) 

molecules have been implemented in the GAMESS electronic structure code. The 

interaction energy between QM molecules and EFP1 water molecules using this EFP1!D 

method were tested using the water dimer and benzene!water clusters. The 

QM!EFP1!D interaction energies are compared with the predictions obtained using the 

fully QM Hartree-Fock and second order perturbation theory methods, as well as the 

generalized effective fragment potential (EFP2) method, all with the 6-311++G(3df,2p) 

basis set. The results show that the QM!EFP1!D method can capture the essence of the 

more sophisticated EFP2!EFP2 interaction energies. 
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I. Introduction 

 

Intermolecular interactions between solute and solvent play a vital role in many 

applications related to chemistry, physics, and biology. Often the solvent environment 

alters the solute properties such as reactivity, spectroscopy, and dynamics via 

solute!solvent intermolecular interactions. The main intermolecular interactions, which 

contribute to the total intermolecular interaction energy are electrostatics (Coulombic), 

induction (polarization), van der Waals interactions (dispersion), exchange repulsion, and 

charge transfer (CT) interactions. The Coulomb, polarization, and dispersion interactions 

are long-range interactions. The exchange repulsion and CT are short-range interactions. 

Depending on the physical and chemical nature of the solute and solvent molecules, 

which take part in the interaction, the contribution from each interaction type to the total 

interaction energy can vary significantly.  

 

Quantum mechanical (QM) methods such as second-order perturbation theory 

(MP2)1 and coupled cluster (CC) theory,2,3 capture the aforementioned interactions via 

first principles inclusion of electron correlation. Energy decomposition methods such as 

symmetry adapted perturbation theory4,5 and various energy decomposition analysis 

(EDA) schemes6-16 help to interpret the total QM interaction energy in terms of 

physically meaningful components. However, most correlated fully QM calculations are 

limited to relatively small systems due to the high computational cost of these methods. 

An alternative approach to the study of intermolecular interactions is to use a model 
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potential. Some model potentials, sometimes called molecular mechanics (MM) 

potentials, can account for the range of intermolecular interactions. There are a few 

model potentials that are mainly classical in nature but are derived from rigorous QM 

approaches. One such sophisticated model potential is the effective fragment potential 

(EFP)17-20 method that is implemented in the GAMESS (General Atomic and Molecular 

Electronic Structure System) electronic structure package.21,22 

 

 There are two versions of the EFP method: EFP1 and EFP2. EFP1 is strictly a 

water potential, while EFP2 is completely general. However, the EFP2 method has not 

been fully integrated with QM methods. The EFP1 interaction energy17,18 is written as 

follows: 

E EFP1( ) = ECoul + EPol + ERem    (1) 

where ECoul  denotes the Coulomb interaction, calculated according to the distributed 

multipole analysis (DMA) suggested by Stone,23,24  with  the expansion points located at 

the atom centers and the bond midpoints. The polarization term EPol  is determined using 

a tensor sum of localized molecular orbital (LMO) polarizability tensors that are centered 

at the LMO centroids. The third term in Eq. (1), ERem , is a remainder term that is 

obtained by subtracting the first two terms from the total QM interaction energy of the 

water dimer and fitting the remainder to a functional form that depends on whether one is 

considering a QM!EFP1 interaction or an EFP1!EFP1 interaction. The QM!EFP1 

interaction energy has been fitted using Hartree-Fock (EFP1/HF) and density functional 

theory (DFT) with the B3LYP functional25,26 [EFP1/DFT].27 The EFP1 method has 
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successfully been interfaced with most QM methods. In addition to HF and DFT, these 

methods include time-dependent DFT (TDDFT),28 singly excited configuration 

interaction (CIS),29 multiconfiguration self-consistent field (MCSCF), MP2 and 

multireference MP2 (MRPT2),30 and CC theory. Most applications of the EFP1 method 

have been devoted to determining aqueous solvent effects on ground and electronically 

excited state QM properties and processes.28-62 However, the missing long-range 

interaction type in the QM!EFP1 formulation is the dispersion interaction energy, since 

dispersion is not included in the HF or B3LYP methods to which EFP1 was fit. 

Dispersion can be important in water interactions, including those with nonpolar species 

such as benzene.63,64   

 

The EFP2 interaction energy may be written as follows: 

E EFP2( ) = ECoul + EPol + EExrep + EDisp + ECT   (2) 

where the ECoul  and EPol  terms are determined as described above. The EExrep , EDisp , 

and ECT  terms are derived from first principles. Hence, there are no empirically fitted 

parameters in EFP2. Generally, the EFP2 method can represent any solvent. In many 

applications,20,65-67 68,69 63,70-72 it has been shown that the EFP2 method can accurately 

predict the broad range of intermolecular interactions including the dispersion interaction. 

EFP2 is an attractive method due to its low computational cost. The accuracy of EFP2 for 

intermolecular interactions is frequently comparable to that of MP2.73 However, since the 

QM!EFP2 analytic gradients have not been fully implemented, the use of the QM!EFP2 

method is limited. Therefore, it is desirable to improve the accuracy of the EFP1 method 
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by including dispersion interactions, where the QM!EFP1 analytical gradient is 

available. 

 

The dispersion interaction arises from an attractive force between atoms and 

molecules that is caused by the interactions of induced multipoles. Dispersion arises from 

the correlated movement of electrons; an instantaneous multipole on one molecule may 

induce a multipole on another molecule.24,74 Dispersion could be introduced into the 

EFP1 method in a manner that is analogous to the Grimme dispersion correction to DFT 

(DFT!D) or HF (HF!D). Such a method can be called EFP1!D. The Grimme dispersion 

correction 75-77 to the HF or DFT method is summarized below. The EFP1!D method is 

formulated in the same way. There are three !D implementations: DFT!D,75 DFT!D2,76 

and  DFT!D3.77 In this paper the DFT!D3 implementation is used. For simplicity of 

notation, throughout this paper, the DFT!D3 method will be referred to as the !D 

correction.  

 

The dispersion correction to the HF total electronic energy, HF!D, has the 

following form: 

EHF!D = EHF + E
Disp    (3) 

where EHF  is the HF energy and EDisp  is an empirical dispersion correction given by a 

sum of two- and three-body energies: 

EDisp = E 2( ) + E 3( )    (4) 

The most important two-body term E 2( )  is given by 
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E 2( ) = !
B>A

N

"
n=6, 8
" sn

Cn
AB

RAB
n fdamp RAB( )    (5) 

where, N denotes the number of atoms in the molecule, Cn
AB   denotes the averaged nth-

order dispersion coefficient (where n = 6, 8) for atom pair A and B, and RAB  is the 

internuclear distance between atom pair A and B. The term sn is a global scaling factor 

that is set to 1.0 for HF. For DFT, s6  is 1.0 but s8  is typically used to adjust the 

correction to the repulsive behavior of the chosen density functional. To avoid 

singularities for small RAB , a damping function fdamp  must be used: 

fdamp RAB( ) = 1
1+ 6 RAB sr , n  R0

AB( )!"n
   (6) 

where R0
AB  is a cutoff radius for atom pair A and B. The sr ,n  term is an order-dependent 

scaling factor for the cutoff radii R0
AB . For HF sr , n  is set to unity. For DFT sr , n   is a 

density functional-dependent scaling factor78 The exponent ! n  is a constant that 

determines the steepness of the functions for small RAB . The damping function is 

important because at small RAB it decays fast enough to zero that the atom-atom 

dispersion corrections at distances below typical van der Waals distances are negligible. 

 

The three-body term E 3( )  is given by 

E 3( ) = !
ABC
" fd , 3( ) RABC( )EABC    (7) 
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where the sum is over all atom triples ABC. The term fd , 3( )  is a damping function that is 

similar to the one in Eq. (6). Geometrically averaged radii between atoms A, B, and C (

RABC ) are used. EABC  is the nonadditive (called Axilrod–Teller–Muto or triple dipole) 

dispersion term as derived from third-order perturbation theory for three atoms A, B, C: 

24 79 

EABC =
C9

ABC 3cos!a cos!b cos!c +1( )
RABRBCRCA( )3

   (8) 

where !a, !b, and !c are the internal angles of the triangle formed by RAB , RBC  and RCA , 

and C9
ABC  is the triple-dipole constant approximately defined by 

C9
ABC ! " C6

ABC6
ACC6

BC    (9) 

 

II. Computational Details 

 

In this study, the water dimer (W2) and benzene with one (BW1) and eight 

(BW8) water molecules were studied using the dispersion correction to QM!EFP1. All 

calculations in the present work were performed with the GAMESS electronic structure 

code. The W2, BW1 and BW8 complexes are fully optimized with HF (QM!QM), MP2 

(QM!QM), QM!EFP1/HF and EFP2!EFP2, all using the 6-311++G(3df,2p) basis set, in 

C1 symmetry. The water and benzene monomers, as well as the eight-water cluster, were 

optimized at the corresponding level of theory. The HF!D dispersion correction was 

made to the interaction energies obtained with HF and EFP1/HF. QM!EFP1 and 
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EFP2!EFP2 energy decompositions were also performed. The Kitaura–Morokuma 

interaction energy decomposition analysis6 was carried out at the HF/6-311++G(3df,2p)  

level of theory.  

 

III. Results and Discussion 

 

Tables 1!3 summarize the predicted center of mass to center of mass 

intermolecular distances (Re) and the interaction energies (De) with the energy 

decomposition analysis for W2, BW1, and BW8 complexes. Figure 1 illustrates the 

MP2/6-311++G(3df,2p) optimized structures of the W2, BW1, and BW8 complexes.  

 

One water molecule in W2 is a hydrogen donor and the other is a hydrogen 

acceptor in the hydrogen bond interaction. So, for the QM and EFP1 interaction of W2, 

there can be two different arrangements: [1] the donor molecule is QM and the acceptor 

is EFP1 (QM!EFP1), or [2] the donor molecule is EFP1 and the acceptor molecule is 

QM (EFP1!QM). As shown in Table 1, the HF (QM!QM), QM!EFP1, EFP1!QM, 

EFP1!EFP1, and EFP2!EFP2 levels predict an optimum inter-monomer separation ~ 0.1 

Å wider than that found with MP2 (QM!QM). The EFP1!EFP1 optimum separation for 

W2 (3.0 Å) is identical to that found with EFP2!EFP2. Compared to MP2 (QM!QM), 

the EFP2!EFP2 W2 is more strongly bound, by 1.0 kcal/mol. 
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The main attractive term in W2 interactions is the Coulombic energy, because it is 

an interaction between two polar molecules. However, the W2 interaction also has 

considerable exchange-repulsion energy. For example, the EFP2!EFP2 Coulomb energy 

is around !10 kcal/mol but the exchange repulsion is large as +7 kcal/mol. The 

polarization and the dispersion contributions to De are small and they have similar 

magnitudes to each other. The EFP2!EFP2 dispersion energy is about !1.7 kcal/mol but 

the !D correction is about !0.8 kcal/mol. Adding the !D correction to the HF (QM!QM) 

energy, is important to recover the MP2 De within about 0.6 kcal/mol.  

 Inclusion of a !D correction to the QM!EFP1 and EFP1!EFP1 De brings their 

accuracy closer to EFP2!EFP2, within about 0.5 kcal/mol. However, the !D corrected 

EFP1!QM De is still about 1.3 kcal/mol less negative than that of EFP2!EFP2. This may 

partly be explained by the fact that the basis set used to fit the EFP1 ERem  term is much 

smaller than the one used in the present work.  

 

The oxygen atom and one of the hydrogen atoms in the water molecule are 

oriented almost perpendicular to the plane of the benzene ring in the BW1 complex. In 

the BW1 complex, the negatively charged benzene "-cloud donates electron density to 

the water hydrogen atom, which is pointed towards the benzene ring. Therefore, the water 

molecule acts as a hydrogen bond donor and the benzene acts as a hydrogen bond 

acceptor. The experimental values of the intermolecular distances, (Re) determined as the 

distances between the centers of mass in BW1, ranges from 3.32 to 3.35 Å.80-82 Table 2 

shows that MP2 and EFP2!EFP2 underestimate the experimental value by 0.1 Å, 
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whereas HF and QM!EFP1 overestimate the BW1 experimental value by about 0.4 Å. 

Experimentally, there is considerable variation in the measured BW1 binding energy 

(D0), with a range from !1.63 to !2.78 kcal/mol.80 Calculated binding energies De 

dramatically depend on the method and basis set used.63 Feller and coworkers83 predicted 

the MP2 D0 to be 2.9 ± 0.2 kcal/mol (D0 = 3.9 ± 0.2 kcal/mol and ZPE = 1.0 kcal/mol) 

with an estimated complete basis set (CBS) limit. The aforementioned ZPE of 1.0 

kcal/mol can be used to estimate the QM!EFP1!D D0 to be !3.7 kcal/mol (The 

QM!EFP1!D De is !4.7 kcal/mol) in very good agreement with the MP2/CBS limit 

(within 1 kcal/mol) and the experimental values (within 1!2 kcal/mol). The dispersion 

correction in the BW1 complex is about !2 kcal/mol. The main attractive contribution to 

the De comes from ECoul  and EDisp  for the binding of the BW1 van der Waals complex.  

 

As shown in Figure 1, the oxygen atoms of the eight water molecules in BW8 are 

arranged in a cubic structure. The water molecules are arranged in different orientations 

and bind to each other via hydrogen bonds to form the cubic structure. In the BW8 

complex (Figure 1), the water molecules are labeled 1 through 8. One of the water 

hydrogen atoms in water molecule 1 is pointed towards the benzene ring. Table 3 

summarizes the BW8 calculated data in this work. In the BW8 complex the Re predicted 

by HF and QM!EFP1 are both almost the same as the EFP2!EFP2 and MP2 Re. The 

QM!EFP1!D De has almost the same value as the EFP2!EFP2 De (within 0.1 kcal/mol). 

This is important evidence that the accuracy of the QM!EFP1!D interaction energy is 

very close to that of EFP2–EFP2. The De of MP2 in BW8 is about !6 kcal/mol, which is 
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about 2 kcal/mol more negative than that of BW1. Therefore, the addition of seven water 

molecules to the BW1 increases its De by about 50 percent. 

 

IV. Conclusions 

 

This paper presents a study of water!water (W2) and benzene!water (BW1 and 

BW8) complexes based on the both ab initio and effective fragment potential method. 

The binding energies in the clusters were evaluated at the HF and MP2 levels of theory 

with the 6-311++G(3df,2p) basis set. The binding energies also were computed with all 

possible QM!EFP and EFP!EFP arrangements. The dispersion correction to the 

QM!EFP1 interaction was introduced empirically and compared to the interaction 

energies of more general and highly accurate EFP2!EFP2.  

 

The absolute difference in the interaction energies between HF!D (QM!QM) and 

MP2 (QM!QM) is 0.6 kcal/mol for W2, 0.6 kcal/mol for BW1, and 1.9 kcal/mol for 

BW8. Interestingly, the absolute difference in the interaction energies between 

QM!EFP1!D and EFP2!EFP2 is 0.4 kcal/mol for W2, 0.1 kcal/mol for BW1, and 0.1 

kcal/mol for BW8. This means that the accuracy of the simple QM!EFP1!D method 

provides interaction energies that are almost equivalent to the more sophisticated 

EFP2!EFP2 approach for the dispersion dominant complexes such as benzene-water 

complexes. It is gratifying that the agreement between HF!EFP1!D and EFP2 for the 
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complexes studied here is slightly better than the agreement between HF!D and MP2 for 

the same complexes. 
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Table 1. Water dimer center of mass to center of mass distance, Re (Å), and interaction energy, De (kcal/mol), Coulomb (ECoul

), exchange repulsion (EExrep ), polarization (EPol ), charge transfer (ECT ), and dispersion (EDisp ) using the 6-311++G(3df,2p) 

basis set. The interaction energies without the dispersion energies (without the !D corrections) are given in parentheses.  

HF//HF Re De ECoul  EExrep  EPol  ECT  EDisp  

QM ! QMa 3.04 ! 4.73 (! 3.93) ! 6.58 4.10 ! 0.87 ! 0.95 ! 0.80 

        

QM ! EFP1b 2.97 ! 5.90 (! 5.09) ! 7.81 3.95 ! 1.25  ! 0.81 

        

EFP1 ! QMc 3.05 ! 5.10 (! 4.30) ! 6.21 2.43 ! 0.52  ! 0.80 

        

EFP1 ! EFP1d 3.00 ! 5.89 (! 5.10) ! 6.67 2.17 ! 0.60  ! 0.80 

        

EFP2 ! EFP2e 3.00 ! 6.31  ! 9.82 7.41 ! 1.59 ! 0.62 ! 1.69 

MP2//MP2        

QM ! QMa 2.91 ! 5.32      
a Both water molecules are treated as QM. 
b The hydrogen donor is treated as QM and the hydrogen acceptor is treated as EFP1. 
c The hydrogen donor is treated as EFP1 and the hydrogen acceptor is treated as QM. 
d Both water molecules are treated as EFP1. 
e Both water molecules are treated as EFP2. 
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Table 2. The benzene-water center of mass to center of mass intermolecular, Re (Å), and the interaction energy, De (kcal/mol), 

Coulomb (ECoul ), exchange repulsion (EExrep ), polarization (EPol ), charge transfer (ECT ), and dispersion (EDisp ) using the 6-

311++G(3df,2p) basis set. The interaction energies without the dispersion energies (without the !D corrections) are given in 

parentheses.  

HF//HF Re De ECoul  EExrep  EPol  ECT  EDisp  

QM ! QMa 3.70 ! 3.76 (! 1.81) ! 2.15 1.02 ! 0.43 ! 0.28 ! 1.95 

        

QM ! EFP1b 3.66 ! 4.73 (! 2.69) ! 3.02 0.65 ! 0.32  ! 2.04 

        

EFP2 ! EFP2c 3.21 ! 4.68  ! 4.88 4.66 ! 1.23 ! 0.34 ! 2.89 

MP2//MP2        

QM ! QMa 3.26 ! 4.32      
a Both benzene and water molecules are treated as QM. 
b The benzene molecule is treated as QM and the water molecule is treated as EFP1. 
c Both benzene and water molecules are treated as EFP2. 
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Table 3. The center of mass to center of mass distance between benzene and the eight-water cluster, Re (Å), and the interaction 

energy, De (kcal/mol), Coulomb (ECoul ), exchange repulsion (EExrep ), polarization (EPol ), charge transfer (ECT ), and 

dispersion (EDisp ) using the 6-311++G(3df,2p) basis set. The interaction energies without the dispersion energies (without the 

!D corrections) are given in parentheses.  

HF//HF Re De ECoul  EExrep  EPol  ECT  EDisp  

QM  !  QMa 6.25 ! 4.58 (! 2.09) ! 2.25 0.80 ! 0.28 ! 0.56 ! 2.49 

        

QM  !  EFP1b 6.25 ! 6.73 (! 4.23) ! 3.10 0.70 ! 0.27  ! 2.50 

        

EFP2 !  EFP2c 5.49 ! 6.68  ! 7.18 8.68 ! 2.93 ! 0.55 ! 4.69 

MP2//MP2        

QM  !  QMa 5.28 ! 6.44      
a Both benzene and eight water molecules are treated as QM. 
b The benzene molecule is treated as QM and the eight water molecule are treated as EFP1. 
c Both benzene and eight water molecules are treated as EFP2. 
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W2 

! 5.32 kcal/mol 

 

BW1 

! 4.32 kcal/mol 

 

BW8 

! 6.44 kcal/mol 

Figure 1. MP2/6-311++G(3df,2p) optimized structures of water dimer (W2), benzene 

with one water (BW1), and benzene with eight water (BW8) complexes. The interaction 

energies between solute and solvent complexes are given in kcal/mol. For the W2 case, 

the “left” molecule is the hydrogen donor and “right” molecule is the hydrogen acceptor. 

In the BW8 complex the water molecules are labeled 1 through 8. 
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 CHAPTER 7. GENERAL CONCLUSIONS 

 

In chapter 2, theoretical study of anharmonic molecular vibrations and binding 

energies of Li+–H2, Na+–H2, B+–H2 and Al+–H2 complexes using the VSCF method 

corrected for second order perturbation theory have been presented. The CCSD(T) red 

shifts and the predicted M+–H2 binding energies are in excellent agreement with the 

experimental values. The unusual relationship between the experimentally observed 

binding energies and red shifts in the H–H vibrational frequencies is also well reproduced 

by theory. The fact that the trends in the red shifts do not reflect the binding energy trends 

is interpreted, using the SAPT method, in terms of a balance between opposing attractive 

and repulsive interactions.  

 

The anharmonic corrections to the harmonic frequencies are rather different for 

the three vibrational modes in these M+–H2 complexes.  For example, the ratio of the 

VSCF-PT2/harmonic frequencies is 0.94 for the H-H stretch, while this ratio ranges from 

0.74 to 0.86 for the symmetric stretch vs. 0.87 to 0.94 for the antisymmetric stretch.  This 

means that one universal scaling factor to scale the harmonic frequencies would not 

capture the actual anharmonicity that is present in the complexes. So, while calculating 

VSCF frequencies is more computationally challenging than employing a simple scale 

factor, the VSCF approach is more accurate. 
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In chapter 3, The PT2-VSCF approach is employed at the CCSD(T) level of 

theory to compute the vibrational spectrum of Li+–(H2)n complexes, for n = 1,2,3. The H2 

subunits are predicted to be weakly bound (~5 kcal/mol) to the lithium cation. The 

strength of the metal–H2 complex interaction mainly depends on the number of H2 

subunits attached to the metal cation, where the interaction decreases with increasing n. 

The calculated H–H frequency red shifts are in good agreement with the available 

experimental data. The downward shifts of the H–H frequency are correlated with the 

complexation energy per H2. The H–H stretching frequency varies according to the 

delocalization of the H–H electron density toward the metal cation and the consequent 

weakening of the H–H bond, compared to the frequency of the isolated H2 molecule. The 

amount of delocalization of the electron density per H2 subunit towards the metal cation 

decreases with n, resulting in a less red-shifted H–H stretching frequency.  

 

In the Li+–(H2)n complexes (n = 1,2,3), the modest 5 kcal/mol interaction energy 

might be suitable for a hydrogen storage system with favorable H2 loading and unloading 

kinetics. In order to load or unload the H2 to/from the Li+, one needs pay attention to the 

Li+–H stretching modes. Among the Li+–H stretching modes, the most IR active modes 

(!3 of Li+–H2, !5 of Li+–(H2)2, and degenerate !7 and !8 of Li+–(H2)3),  are responsible for 

dissociation of an H2 from the Li+ Therefore, one might increase the temperature or 

provide the correct amount of energy to the most IR active Li+–H stretching modes in 

order to release H2 and vice versa. 
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In chapter 4, four different levels of theory CIS, EOM-CCSD, CR-

EOMCCSD(T), and TDDFT (PBE0 functional) with cc-pVDZ basis set is used to study 

the explicit solvent effect on the electronic spectra for the of HCONH2:n(H2O) and 

NMA:n(H2O) complexes (n = 1~3). These computational results provide the qualitative 

interpretation of the solvent effects on the electronic absorption spectra of amides. In 

addition, the simulated electronic spectra are calculated through the QM/EFP1 MD 

simulation combined with TDDFT/EFP1. The calculated water solvent effect on the 

n!!* and !nb!!* vertical excitations exhibits quantitative blue and red -shifts in the 

amides, which are consistent with the experimental observation.  

 

The schematic energy level diagrams are used to understand the solvent induced 

blue and red -shift vertical excitation of the amides. In summary, the physical origin of 

the solvent effect on n!!* (blue-shift) and !nb!!* (red-shift) vertical excitations of 

amides could be understood as how the energies of occupied molecular orbitals are 

changed relative to that of the !* due to stabilizing (or destabilizing) electronic 

interaction of water with the electronic densities of the amides.  

 

In chapter 5, the theoretical study of the ground state and excited state 

tautomerization reaction in C456 have been presented, using PBE0/DH(d,p) and 

TDPBE0/DH(d,p), respectively. The transition states of the hydrogen atom transfer 

reaction was found in C456:3H2O, C456:3H2O with PCM as well as C456:3H2O with 

small clusters of EFP waters. The optimized geometries of the corresponding tautomers 
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were also presented. The TDPBE0/DH(d,p) ESP-derived charges along the excited state 

IRC path predicts that the tautomerization reaction is a hydrogen atom transfer reaction, 

with hydrogen partial charges ~0.55 e. The predicted activation energies are in excellent 

agreement with the experimental evidences. The addition of water molecules to C456 

assists the hydrogen atom transfer reaction by decreasing the activation energy in the 

excited state.  

 

The results in the present work have also been compared with the previous 

theoretical data reported by Georgieva, et al. on the C456:3H2O system. They have 

considered the S1 enol to keto tautomerization as a proton transfer reaction; the barrier 

height was estimated to be 17-20 kcal/mol at the TDB3LYP/SVPD level of theory. In the 

present paper, the S1 enol to keto tautomerization of C456:3H2O was interpreted  as a 

hydrogen atom transfer reaction (not a proton transfer reaction) and the 

TDPBE0/DH(d,p) barrier height was calculated to be 10.15 kcal/mol (5.30 kcal/mol 

activation energy). 

 

In chapter 6, presents a study of water"water (W2) and benzene"water (BW1 and 

BW8) complexes based on the both ab initio and effective fragment potential method. 

The binding energies in the clusters were evaluated at the HF and MP2 levels of theory 

with the 6-311++G(3df,2p) basis set. The binding energies also were computed with all 

possible QM"EFP and EFP"EFP arrangements. The dispersion correction to the 
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QM"EFP1 interaction was introduced empirically and compared to the interaction 

energies of more general and highly accurate EFP2"EFP2.  

 

The absolute difference in the interaction energies between HF"D (QM"QM) and 

MP2 (QM"QM) is 0.6 kcal/mol for W2, 0.6 kcal/mol for BW1, and 1.9 kcal/mol for 

BW8. Interestingly, the absolute difference in the interaction energies between 

QM"EFP1"D and EFP2"EFP2 is 0.4 kcal/mol for W2, 0.1 kcal/mol for BW1, and 0.1 

kcal/mol for BW8. This means that the accuracy of the simple QM"EFP1"D method 

provides interaction energies that are almost equivalent to the more sophisticated 

EFP2"EFP2 approach for the dispersion dominant complexes such as benzene-water 

complexes. It is gratifying that the agreement between HF"EFP1"D and EFP2 for the 

complexes studied here is slightly better than the agreement between HF"D and MP2 for 

the same complexes. 
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